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Abstract 

Touchless interfaces represent a promising advancement in human-machine interaction, 

with midair haptic interfaces gaining significant attention. These interfaces use focal 

ultrasound (US) beams projected onto the skin to create vibrational sensations, enabling 

dynamic haptic feedback through hand tracking. This technology has broad applications 

across industries such as automotive, extended reality, medical training, and immersive 

marketing. 

To the best of our knowledge, this EEG study is first to extend frequency-tagged neural 

markers to the domain of ultrasound-based haptics. Specifically, a low-frequency haptic 

pulse was employed to drive steady-state somatosensory evoked potentials (SSSEPs) in 

subjects EEG, which was then analyzed by spectral analysis and multivariate generalized 

eigendecomposition (GED). 

EEG analysis results indicate substantial difficulties in entraining the frequency tag, as 

no distinct peak in the driving frequency was found in sensor-space. Moreover, power 

spectral density (PSD) analysis reveals a suppression in the driving frequency both in 

absolute values and partly also relative to ipsilateral sites for some cases. GED analysis 

however, points towards an entrainment of the driving frequency in accordance with the 

somatosensory template. Additionally, highly variable results between and within 

participants were observed in terms of PSD estimations and GED components, which are 

discussed in the limitations section. 

Despite the inconclusive results, this pilot study provides valuable insights for informing 

a refined experimental protocol for large-scale execution on establishing reliable neural 

markers for ultrasound-based haptics. This conceptual foundation can  be used to 

generate comparability with traditional haptics on a neural level, making way for 

investigations of cognitive processes such as attentive biases in operator systems.   
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Introduction 

Touchless haptic interfaces, such as those produced by Ultraleap, represent a significant 

advancement in human-computer interaction technology. These interfaces allow users to 

experience tactile sensations and control devices without physical contact. Leveraging 

ultrasound technology, touchless haptic interfaces create a more immersive and hygienic 

(imec, 2020) user experience across various applications, from virtual reality to 

automotive industry (Large, Harrington, Burnett, & Georgiou, 2019). In automotive 

applications, integrating ultrasound-based haptics into gesture control systems offers 

significant advantages. For example, Bosch and Harman Group are developing systems 

that allow drivers to control various in-vehicle functions through hand gestures detected 

by devices like the LEAP Motion Controller. (Ultraleap, 2019). The company argues that 

this setup minimizes the need for drivers to look at or touch physical controls, reducing 

visual demand and potential distractions. (Shakeri, Williamson & Brewster, 2018). 

Focused ultrasound provides precise tactile feedback, improving usability and safety. 

Another promising application is to use haptic feedback as an alert signal. Picture a 

vehicle driving in autonomous mode. Suddenly, the conditions change, and the driver 

needs to be prompted to take back control of the machine. A haptic alert can augment the 

traditional modes of interaction, such as visual and auditory. 

The evolution towards touchless haptics was driven by the need for more intuitive and 

natural user interfaces. In the 2000s, research into the use of ultrasound to create tactile 

sensations in mid-air gained momentum.[(Hoshi, Iwamoto, & Shinoda, 2009), (Hoshi, 

Takahashi, Iwamoto, & Shinoda, 2010), see (Chouvardas, Miliou, & Hatalis, 2008) for 

review]. This led to the founding of Ultrahaptics, now rebranded to Ultraleap, in 2013 as 

a spin-off of the University of Bristol.  

Touchless haptic interfaces utilize ultrasound waves to create tactile sensations on the 

user's skin. The technology involves an array of ultrasonic transducers that emit high-

frequency sound waves. These waves converge to form precise points of acoustic radiation 

pressure, which can be felt as tactile sensations by the user. Acoustic pressure is 

interpreted by the same sensors – called mechanoreceptors - that detect tactile sensations. 

Mechanoreceptors in the human skin, such as Meissner corpuscles and Pacinian 

corpuscles, respond optimally to specific frequency ranges. Meissner corpuscles are 

sensitive to light touch and low-frequency vibrations around 30-50 Hz, while Pacinian 

corpuscles detect higher-frequency vibrations in the range of 250-350 Hz. These 
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mechanoreceptors work by converting mechanical stimuli into electrical signals that are 

transmitted to the brain, allowing us to perceive touch and vibration. (Abraira & Ginty, 

2013). Ultrasound-based haptics can precisely target these receptors by emitting sound 

waves at their optimal frequencies, thereby creating realistic and detailed tactile feedback 

without the need for physical contact. 

By modulating the amplitude and phase of the ultrasound waves, the system can create 

various textures and sensations, simulating the feel of buttons, sliders, and other 

interactive elements. (Carter, Seah, Long, Drinkwater, & Subramanian, 2013). 

A key component of Ultraleap's system is the Leap Motion Controller, which tracks hand 

movements with high precision using infrared sensors. This data is then used to adjust 

the ultrasound waves in real time, ensuring that the tactile feedback corresponds 

accurately to the user's hand position and movements. This integration of hand tracking 

and haptic feedback enables users to interact with virtual objects as if they were 

physically present.  

Haptic interfaces in operator systems are widely adapted in commercial and industrial 

applications. The most common mode of haptic interface is the vibrotactile one: Utilizing 

small actuators that produce vibrations, most commonly based on rotary or piezo-based 

architectures. Piezo-based haptic actuators produce precise and rapid tactile feedback by 

converting electrical energy into mechanical motion. (see Song et al., 2023 for review). 

Pneumatic haptic interfaces use air pressure to create tactile sensations by inflating and 

deflating small air bladders. Pneumatic systems are effective in simulating realistic 

textures and are commonly used in medical training simulators for replicating the feel of 

human tissues. (See Sénac et al., 2019). 

Ultrasound-based haptics distinguish themselves from pneumatic and vibrotactile 

haptics by providing contactless tactile feedback, essentially decoupling haptic sensations 

from physical surfaces and offering significant advantages in hygiene, versatility, and 

user experience. As this technology evolves, integrating neural markers becomes crucial 

to optimizing and validating these haptic systems, ensuring that the tactile feedback 

aligns seamlessly with the user's cognitive and neural responses, thereby enhancing the 

intuitiveness and effectiveness of the interactions. 
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Establishing Neural Markers for Touchless Haptic Technology 

To fully understand and optimize touchless haptic interfaces, it is best practice to 

establish neural markers that reflect the brain's response to these stimuli. Frequency 

tagging is a method employed in the cognitive neurosciences, which involves the 

presentation of periodic stimuli at specific frequencies to evoke steady-state evoked 

potentials (SSEPs) in M/EEG. [(Nozaradan, 2014), (Wieser, Miskovic, & Keil, 2016)]. 

Frequency tagging relies on rhythmic sensory stimulation that can be observed in the 

spectral domain of the EEG signal. Stimulation thus does not need to be time-locked to 

specific experimental events or produce temporal markers against which the EEG signal 

can be investigated. This is convenient, since we could not reliably link the ultrasound 

stimulation system with the EEG system to yield precise temporal markers of 

stimulation. 

Frequency Tagging and Steady-State Evoked Potentials (SSEPs) 

Frequency tagging leverages the phenomenon that a sensory stimulus modulated at a 

specific frequency leads to neural oscillations, which map onto the stimulation frequency. 

When a stimulus is presented at a constant frequency, a neural oscillation of the same 

frequency is entrained in the brain. This phenomenon holds true in the visual (Norcia, 

Appelbaum, Ales, Cottereau, & Rossion, 2015), auditory [(Drijvers, Jensen, & Spaak, 

2021), (Vos, Collignon, & Boets, 2023)], somatosensory [(Brickwedde, Schmidt, Krüger, & 

Dinse, 2020), (Breitwieser, Kaiser, Neuper, & Müller-Putz, 2012)] and nociceptive domain 

(Colon, Legrain, & Mouraux, 2012).  

This entrained activity is then called SSEPs and can be found in the spectral analysis of 

the M/EEG signal. For example, a 24 Hz visual flicker stimulus entrains a 24 Hz 

oscillation in the visual cortex. A 13 Hz modulated tone entrains a 13 Hz oscillation in the 

primary auditory cortex. Notably, the power of the entrained frequency component 

depends on the asserted attention and the natural tuning to the frequency. For 

somatosensory stimuli, Tobimatsu et al. (2019) have found 21 Hz to be the optimal 

frequency for maximizing the amplitude of steady-state somatosensory evoked potentials 

(SSSEPs).  

This pilot aims to test whether this technique can be extended to the ultrasound-based 

haptic domain. To apply frequency tagging to touchless haptic interfaces, the plan was to 

project flickers of haptic touch onto the palm of the hand and see whether SSSEPs 
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manifest in the somatosensory cortex. This way, one wouldn’t have to worry about a lack 

of synchronization of the EEG system with the Stratos array, as the oscillations manifest 

after approximately 500 milliseconds and remain stable while the flicker continues. 

(Brickwedde et al., 2020). With this consideration in mind, a rough time-lock of stimulus 

onset would suffice for a frequency decomposition of the following period of 20 seconds. 

Analyzing the entrained SSEPs will provide insights into how the brain perceives and 

processes touchless haptic feedback, informing the optimization of these interfaces for 

various applications. Establishing these neural markers is essential for advancing the 

development of touchless haptic technology, ensuring that it not only mimics physical 

touch effectively but also integrates seamlessly with human sensory processing systems. 

In summary, this pilot was conducted to test whether somatosensory SSEPs can be used 

as neural markers for Ultrasound-based haptic stimulation. To test for manifested SSEPs, 

an US-based flicker stimulus was projected onto participants hands - Taking the 

contralateral processing of somatosensory stimulation into account, we expected to 

retrieve the tag on sites contralateral to the stimulated hand in the centroparietal sensors 

lateral to the midline. (Hari et al., 1990). The relative power distribution of this band was 

expected to differ significantly between participants and conditions due to idiosyncratic 

variance in perceiving the stimulus across the experiment. However, a peak in 3Hz is 

expected across conditions and participants. In GED, component maps with strong 

weighting in the respective region of interest (ROI) are expected. 

Methods  

Materials 

The study utilized the Ultrahaptics Development Kit 1 (UHDK1) by Ultraleap, specifically 

designed for touchless haptic feedback. This system employs focused ultrasound (US) 

beams to create tactile sensations in midair, allowing users to feel virtual objects and 

textures without physical contact. The UHDK1 includes the Stratos haptic array, a 

sophisticated device that projects highly focused ultrasound beams onto the user’s skin. 

The array is capable of generating a wide range of tactile sensations, including simple 

shapes like triangles and spheres by precisely controlling the ultrasound beam’s focus and 

movement. Additionally, the system incorporates a hand tracker, which enables the 

device to map the haptic sensations onto the user’s hand and follow its movements. This 

feature makes the haptic feedback non-stationary, dynamic, and adaptable to the user’s 
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movements, enhancing the realism and responsiveness of the virtual touch experience. 

Ultraleap’s Stratos platform utilizes ultrasonic transducers operating at 40 kHz to create 

mid-air haptic sensations. This carrier frequency is modulated by a 200 Hz signal, which 

affords interpretability by human mechanoreceptors. The transducers emit focused sound 

waves that converge to form tactile feedback, which can be felt by the user’s hands without 

physical contact. The technology leverages the patented Time Point Streaming (TPS) to 

enable high-refresh-rate and complex haptic feedback, allowing for detailed rendering of 

3D shapes and textures. In total, the UHDK1 array featured 256 transducers. (Ultraleap, 

n.d.). 

For EEG data acquisition, the ANTNeuro eego™mylab system with a 64-channel 

configuration and 1024 Hz sampling rate was employed. (ANTNeuro, n.d.). Additionally, 

an EOG sensor was integrated in the acquisition, making the total number of active 

sensors 65.  Electrodes were positioned according to the international 10-20 system. The 

eego amplifier is actively shielded to minimize 50 Hz line noise. 

Participants 

Nine subjects participated in this pilot study, but six data sets were discarded due to 

flawed acquisition and changes in the experimental design, leaving three data sets 

suitable for analysis (n = 3). Participants sat with their hands comfortably placed on a 

custom handrest with a cut-out designed to allow the ultrasound waves to reach their 

hands unhindered. They were instructed to adjust their hand position to maximize the 

subjective sensory sensation, and this calibration was repeated after switching hands.

Fig. 1: A schematic of a 40 kHz ultrasound pressure wave (blue) by a 200 Hz modulation signal (red) to create 

perceivable mid-air tactile sensations.  
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*: Courtesy of Ultraleap 

Procedure 

The main body of the experimental design consisted of four conditions with five 40-second 

trials each. The ultrasound flicker was successively directed to the palm and fingers of 

both the left and right hand. Each trial comprised two 20-second periods, with a 2 Hz 

flicker followed by a 3 Hz flicker. The only variable within a trial was the flicker frequency. 

To keep participants attentive, they were instructed to lift a finger of the contralateral 

hand upon sensing a change in frequency. Additionally, a 60-second baseline period was 

recorded before the flicker trains. Lastly,  Participants were asked which hand placement 

resulted in the strongest sensations and the preferred location was used for 60-second 

continuous stimulation.

Preprocessing 

Raw time-series was inspected visually. Then, data was filtered off-line between 1 and 40 

Hz using a Butterworth band-pass filter. Electrical distance between electrodes was 

computed to scan for bridged electrodes. Electrode bridging occurs when two or more 

electrodes in an electrophysiological recording system are electrically connected, usually 

due to the presence of a conductive substance like sweat or gel spillover. Bridged channels 

Fig. 2: Upper left: UltraHaptics Development Kit 1 (UHDK1) with an integrated 

Leapmotion handtracker of the same firm*. Upper right: Transducer- close-up of the 

device as used in the study. Lower left: A snapshot of the experiment being conducted. 

Note the gap between hand and the cut-out of the box. Lower right: Haptic air pressure 

is generated by constructive interference of mechanical waves forming focal points in 

the air*.  
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carry highly correlated signal and can introduce artefacts and distort the recorded signals. 

Therefore, bridged electrode clusters were excluded in a way, such that only one electrode 

of a bridged cluster remained. ICA, a computational method used to separate a 

multivariate signal into additive and independent components, yielded no troubling 

artefactual components and thus all were retained. This method is commonly used for 

artefact rejection such as eye- or muscle-based activity. In this case, participants were 

instructed to keep their eyes closed and not to move, so components matching the eye 

template were only sparsely distributed.  

The preprocessed data was epoched into 40-second trials, each consisting of two 20-second 

periods. Subsequently, half of the electrodes were removed, excluding the frontopolar, 

frontal, parieto-occipital, and occipital electrodes. This reduction in electrode count aimed 

to result in cleaner components. Such sparsity approach has proven effective in 

minimizing noise in previous work. (Rosso, 2023). 

Analysis 

Analysis was run on Python 3.12.4 utilizing the libraries matplotlib, MNE, NumPy, 

pickle, and SciPy. Data was analyzed by a channel-wise PSD computation and generalized 

eigendecomposition (see Cohen, 2022. & Cohen, 2021) using the MNE library in Python 

(Gramfort et al., 2013), along with NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 

2020). 

For univariate analysis in frequency space, Power Spectral Density (PSD) estimation was 

conducted to analyze periodicities and identify dominant frequencies in time-series data. 

The Fast Fourier Transform (FFT) was then used for spectral decomposition. Epochs were 

trimmed to only include the 3 Hz stimulation period for ease of visualization. The 

extracted PSD values of palm and finger stimulation trials from each hand were 

aggregated per participant. Six channels were identified as the region of interest (ROI) 

per side, located posterior and lateral to the vertex, thus covering the second sensorimotor 

cortex. (Left ROI: CP1, CP3, CP5, C1, C3, C5, and right ROI: CP2, CP4, CP6, C2, C4, C6). 

Odd-numbered electrodes were on the left hemisphere, and even-numbered electrodes 

were on the right. Thus, the left condition featured right-sided (even) electrodes and vice-

versa. Additionally, condition-wise power differences between left and right regions of 

interest (ROIs) were inspected. For each condition, the channel-resolved PSDs of the 

expected (contralateral) ROI were contrasted against the ipsilateral one. Electrodes were 
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paired, and their power was point-wise subtracted to highlight the relative differences in 

brain activity between the two ROIs. 

As the second axis of analysis, generalized eigendecomposition (GED) was conducted. This 

involves solving the generalized eigenvalue problem defined by the equation 

𝐒𝐰 = 𝛌𝐑𝐰 

 where S is the covariance matrix of the signal of interest, and R is the covariance matrix 

of the reference signal. The eigenvector w (spatial filter) associated with the eigenvalue λ 

is sought to maximize the variance of the signal of interest while minimizing the variance 

of the reference signal. If the data are organized in a channels-by-time matrix X, then the 

covariance matrix for the signal of interest, S, can be computed as S = XsXs
T, where Xs is 

the signal matrix. Similarly, the covariance matrix for the reference signal, R, is given by 

R=XrXr
T , where Xr  is the reference signal matrix.  

The goal of GED in this context is to derive a spatial filter w that optimally enhances the 

contrast between the signal of interest and the reference signal. This spatial filter is 

represented by the eigenvector corresponding to the largest eigenvalue, λ which 

quantifies the ratio of the variances of the signal of interest to the reference signal. GED 

is an advanced algorithm similar to principal component analysis (PCA) but is informed 

by the trial design and not bound by the orthogonality assumption of components. Unlike 

PCA, which is a blind source separation technique that does not take experimental 

conditions into account, GED returns a spatial filter of electrode weights that maximize a 

pre-specified contrast, such as differences in spectral power between conditions. By 

decomposing covariance matrices from a stimulus and reference condition, GED identifies 

spatial filters that maximize the variance between different experimental conditions 

while minimizing within-condition variance. This method exploits the contrast defined in 

the trial design. Within one trial, two periods of stimulation occur, differing only in one 

attribute: the flicker frequency. The thereby entrained steady-state evoked potentials 

(SSEPs) define the contrast for this method. 

For this, a subset of 30 channels was selected. GED relies fully on the quality of the S and 

R matrix whose product is diagonalized by GED. The pipeline of computation is as follows: 

Trials were cropped to only feature the 3 Hz stimulation (18 seconds). Per subject and per 

condition, all trials were stitched into an array. For S, the time series was band-pass 

filtered between 2.5 and 3.5 Hz. For R, the data was kept in broad-band.  
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The procedure from this point on is identical for both arrays. The array was segmented 

into 2-second parcels, and for each parcel, a channel-by-channel covariance matrix was 

computed. All matrices were then averaged to create the S and R matrix for the 

subsequent GED. In total, * subjects * 4 condition * 2 = 24 covariance matrices. 

The resulting eigenvalues from this decomposition are then sorted in descending order 

and normalized against the strongest eigenvalue to form a power ratio. To visualize the 

variance explained by each eigenvalue, a scree plot is created, plotting the normalized 

eigenvalues against their respective ranks.  

Choosing the averaging approach for computing covariance matrices allows for capturing 

the temporal dynamics of the EEG signal, which could be lost with a single, global 

covariance matrix. Additionally, averaging covariance matrices from smaller chunks can 

reveal subtle, time-specific relationships between channels that a whole-series approach 

might obscure. This method enhances the sensitivity of GED to detect variations in 

spectral power and other neural dynamics, ensuring that transient and periodic 

phenomena are accurately represented in the analysis. Importantly, this segmented 

approach introduces a nonlinear operation that can capture complex interactions and 

nonlinear dependencies in the EEG data, which might not be evident through linear 

methods alone. All processing steps were identical for the participants. Code and data 

files can be found on the corresponding Github repository. 

Results 

 This study employed generalized eigenvalue decomposition (GED) analysis on EEG data 

(n = 3) to trace somatosensory steady-state evoked potentials under four different 

conditions of ultrasound-based flicker stimulation: right palm, left palm, left fingers, and 

right fingers. The aim was to observe the brain's thereby entrained responses and 

compare the spatial and spectral characteristics of the GED components across these 

conditions and participants. 

Univariate Analysis 

Figure 3 shows the averaged Power Spectral Density (PSD) plots for six channels for three 

participants under left and right conditions. The main focus is on the 3 Hz stimulation 

frequency and its surrounding frequencies to analyze the neural response to the 3 Hz 

stimulation. No 3 Hz peak is visible across participants in the provided PSD plots, 

https://github.com/rvodila
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indicating a lack of clear entrainment to the stimulation frequency. Contrary to 

expectations, subjects 0 and 5 even show a suppression in the driving frequency in the left 

condition. This is peculiar, as it contradicts the hypothesis and workings of SSEPs. Only 

subject 1 in the left stimulation conditions shows a slight peak in the driving frequency. 

In short, there is no indication of successful entrainment across the participants from 

spectral analysis of sensors.  

Figure 4 illustrates the channel-resolved power differences between left and right ROI for 

each condition. To aggregate left and right hemisphere differences, electrodes were 

paired, and their power values subtracted. Positive values read as more power in the 

expected ROI, and negative values read as more power in the ipsilateral sites. Subject 0 

depicts hypothesis-coherent power differences for right conditions, but curiously enough, 

this trend is reversed for left conditions. Precisely at 3 Hz, ROI sensors for left conditions 

show weaker power than ipsilateral sites. It is important to note that the two conditions 

depict relative relations and are not based on the same data. The patterns in subject 0 

indicate that in both left and right stimulation, entrainment in the right hemisphere was 

dominant relative to the left ROI sensors. Both subject 1 and subject 5 show noisy data 

around 3 Hz with a peak in right conditions at 3.3 Hz driven by C6/CP6 sensors. subject 

5 also shows a peak in CP5 close to the driving frequency. The positive deflections indicate 

that there was higher power in the contralateral sites as opposed to the ipsilateral ones. 

 

Fig. 3 – I. 
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Fig. 3-II: Averaged Power Spectral Density (PSD) for left and right conditions across three subjects, with power 

measured in decibels (dB) on a logarithmic scale. The color codes position along the midline. Lighter shades indicate 

posterior electrodes whereas darker shades represent electrodes on the vertex. The same color code is applied to both 

sides. 
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Fig. 4–I.  
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Fig. 4-II: PSD Difference plots of electrode pairs for left and right conditions across three subjects, with power measured 

in decibels (dB) on a logarithmic scale. The PSD of ipsilateral sensors were subtracted from sensors of the contralateral 

region of interest. Positive values indicate more power in the contralateral region, whereas negative values point to 

lower power. The color codes position along the midline. Lighter shades indicate posterior electrodes whereas darker 

shades represent electrodes on the vertex. The same color code is applied to both sides 

Multivariate Analysis 

It’s expected that conditions involving stimulation on the left side evoke activity on the 

right around electrode CP3 and CP4, respectively as these on top of the somatosensory 

cortex. Importantly, the components spectral features extracted with GED are not narrow 

band. Although one expects a prominence of the target frequency (because electrodes 

featuring that spectral content are weighted more), it is still expected to have background 

broadband activity - including the individual 1/f curve .WHERE.curve. The 1/f power 

distribution, also known as pink noise, describes a signal whose power spectral density is 

inversely proportional to its frequency, indicating more power at lower frequencies and 

less at higher frequencies. (see Wen & Liu, 2016 for review). 

Results reveal substantial variability both within and between participants. Each of the 

following figures presents the spatial weights of the first GED component and its 

corresponding PSD plot. The PSD was calculated by applying the component weights to 

the time series used in the covariance matrix and then performing spectral decomposition. 

The spectral peaks in the band of interest (2.5 – 3.5 Hz) remain stable across conditions 
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but differ substantially between subjects 0 and 1 by 0.74 Hz, despite both being stimulated 

at 3 Hz.  

For participant 0, the expected contralateral activation was observed in three out of four 

conditions. The exception was the "right fingers" condition, which is characterized by an 

obscure spatial pattern. The PSD plots for participant 0 consistently show a prominent 

spectral peak at 2.37 Hz, indicating the frequency at which the maximum power is 

observed. Additionally, an unexpected peak at 0.47 Hz was noted, which is the fifth 

subharmonic of the maximum frequency. This subharmonic presence might point to an 

unusual frequency response not observed in the other participants. 

By contrast, participant 1 displayed the expected contralateral activation only in the "left 

fingers" condition. Interestingly, the "right fingers" condition exhibited ipsilateral SSEP 

entrainment, where the brain activity occurred on the same side as the stimulation. The 

PSD plots for participant 1 revealed a spectral peak at 3.11 Hz, aligning with the 3 Hz 

stimulation frequency. Participant 5 did not exhibit any notable spectral peaks across its 

conditions. This is peculiar, as the PSD is computed from the component-weighted time 

series, which is informed to maximize between-matrix variance and thus maximize the 

contrast of 3 Hz. The time series should be thus by definition characterized by a strong 3 

Hz component. The absence of a notable peak in the PSD for participant 5 suggests that 

the component does not effectively capture the informed contrast - possibly due to 

individual differences in neural processing or issues related to data quality. 

Eigenspectrum Scree plots display the eigenvalues of components in descending order, 

showing how much variance each component captures - normalized against the strongest 

eigenvalue.  

Participant 0 exhibits scree plots with a clear decreasing trend. The first few components 

capture the most variance, followed by a steep decline - the typical pattern of variance 

distribution. Half of subject 1’s scree plots also demonstrate the expected decreasing 

trend, similar to participant 0. Two conditions of subj. 1 however and all of subj. 5  

however, output a flat spectrum. indicating that the power ratio (λ) is consistent across 

all components. This flatness is peculiar as it suggests that no single component explains 

significantly more variance than the others. This pattern can arise due to several factors, 

including homogeneous data where no distinct patterns or features dominate, or data that 

is heavily contaminated with noise, which masks any underlying structure.   
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Fig. 5-I. 
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Fig. 5-II: GED component maps for three participants (0, 1, and 5) under all. GED is used to find spatial filters that 

maximize the signal-to-noise ratio for specific brain activity patterns. The color coding represents sensor weights, with 

the eigenvector projected onto linearly interpolated MNE topoplot objects. Red areas indicate strong contributions to 

the component, while blue areas indicate weaker contributions. The accompanying graphs show the Power Spectrum 

(dB) for each condition, plotted against frequency, highlighting the distribution of power across different frequencies. 

The third row features Eigenspectrum-Scree plots resulting from GED of each condition. It displays the eigenvalues 

of components in descending order, showing how much variance each component captures - normalized against the 

strongest eigenvalue. 

Discussion 

This study employed generalized eigenvalue decomposition (GED) analysis on EEG data 

(n = 3) to trace somatosensory steady-state evoked potentials under four different 

conditions of ultrasound-based flicker stimulation: right palm, left palm, left fingers, and 

right fingers. The aim was to observe the brain's entrained responses and compare the 

spatial and spectral characteristics of the GED components across these conditions and 

participants. 

It is first to note that all means of analysis conclude in huge variance of between and 

within participants. Visual inspection of the PSD plots and component maps reveals 

highly weighted fields bordering the frontal and posterior regions for most conditions. 

Notably, the artifactual weighted fields of subjects 0 and 1 in the left finger and left palm 
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conditions seem identically localized. Ignoring these strongly weighted regions to focus 

solely on the somatosensory template would be hard to defend, necessitating scrutiny of 

data quality and the potential influence of non-target regions.  

The absence of a notable 3 Hz peak in participant 5, despite the components’ PSD being 

computed to maximize contrast at this frequency scrutinizes data quality of this 

participant. This is corroborated by a flat eigenspectrum of each condition. Conditions 

with a descending eigenspectrum curve  - such as for subject 0 - suggest that the GED 

analysis successfully identified components accounting for the most significant variance 

in the data, likely reflecting genuine neural responses. The descending eigenspectrum 

indicates a clear separation of eigenvalues, where a few components (eigenvectors) are 

associated with large eigenvalues, representing significant variance in the data, allowing 

for the identification of principal components reflecting dominant neural activities. 

Conversely, the flat eigenspectrum conditions in participant 5 and partially subject 1 

point towards noise or systematic errors during data acquisition. The flat spectrum lacks 

this separation, indicating all components contribute similarly to the variance. 

GED component maps vary significantly across conditions and participants. In some 

conditions, highly weighted electrodes allude to SSSEPs entrained in the second 

somatosensory cortex. Comparing participants' peaks in the GED components with PSD, 

only participant 1 exhibits a matching pattern between both modes of analysis, with a 

peak in power at 3.1 Hz noted in the PSD of right conditions and difference plots. Subject 

0’s component PSD peaks at ~2.4Hz, which is not reflected in the univariate PSD plots. 

The most puzzling finding is the apparent suppression of the 3 Hz across participants, 

most notably observed in subject 0. PSD lateral-difference plots support fortify this 

pattern, as right conditions show an elevated 3Hz power in contralateral sites, whereas 

the left condition shows higher 3Hz in ipsilateral sites. This reversal of trend within-

subject is most peculiar and opens many questions. Such suppression is not easily 

explained, and I can only speculate it to be attributable to idiosyncratic processing and 

the factors elaborated in the limitations section. Further investigation is necessary to 

address these anomalies and enhance the reliability of neural markers for ultrasound-

based haptics. 
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Limitations 

The study design exhibits several limitations, primarily related to maintaining the 

subject’s focus and technical implementation. Foremost, the study's low participant count 

(n = 3) is important to note, as it substantially limits the interpretability of results. 

Further, the small sample size in addition to high variance across the data prevents 

meaningful aggregation. 

Procedural Issues 

Due to limited time and resources, the study employed an improvised setup, commonly 

referred to as a "wizard of Oz" approach. This required manual synchronization of event 

triggers, with me manually pressing the triggers on both the EEG system and the device 

controlling the array simultaneously. This resulted in only an approximate time-lock of 

the flicker onset event, potentially affecting the accuracy of the recorded data. The 

justification for a roll-out of the study in this state was that steady-state potentials 

manifest after about 400 ms and therefore should be detectable within the 20 second 

stimulation window. This thought however assumed stability of SSEPs across the 

stimulation period, which is arguably invalid, as participants reported feelings of 

drowsiness.  

The most significant issue was the inability to control for drowsiness during data 

acquisition. Previous research has shown that attention significantly affects SSSEP 

amplitude, with reduced attention in drowsy states. Participants reported frequent 

drowsiness, exacerbated by the instruction to keep their eyes closed. Despite attempts to 

mitigate this by instructing participants to lift a finger upon flicker extinguishment, 

drowsiness likely introduced confounding variance between and within trials. This 

variance could lead to GED components not being comparable across trials, diminishing 

the validity of averaging components across trials. 

Furthermore, the haptic flickers produced auditory noise at the same frequency, with 

noise levels higher in the finger conditions than the palm conditions due to better coverage 

of the cardboard packaging box over the device. This noise could interfere with the 

detection of SSSEPs. 
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Hardware Limitations 

Flicker frequencies used for stimulation was limited to low frequencies because higher 

frequency settings were deemed to be unstable, missing beats, or varying in frequency 

despite constant parameters. This instability raises questions about the accuracy of the 

reported stimulation frequencies. When stable enough, this concept could extend to rapid-

invisible stimulation, which operates above the critical flicker fusion frequency of 

perception (Seijdel, Marshall, & Drijvers, 2023). Even when using a low frequency of 3 Hz 

to drive the pulses, there may be deviations in pulse length or repeat gaps, making it 

uncertain whether the stimulation frequencies truly remained at 3 Hz. Ultimately, a way 

of validating pulse length needs to be implemented to ensure accuracy and reproducibility. 

Conclusion 

This pilot study has provided insights into the methodological and technical challenges 

associated with tracing ultrasound-based haptic neural markers. Moving forward, several 

key areas require focus to realize the full potential of employing SSEPs markers to 

ultrasound-based haptics. Firstly, future studies should prioritize the development of a 

fully synchronized setup between the EEG system and the ultrasound device, as time-

locking the stimuli affords time-domain averaging of data. Additionally, strategies to 

mitigate effects of drowsiness and noise pollution, such as interactive tasks to maintain 

participant engagement and improved acoustic shielding, are strongly recommended. 

Furthermore, ensuring consistent stimulation frequencies and minimizing deviations of 

flicker pulses of the US array will enhance the reliability of SSSEP entrainment, leading 

to more robust and reproducible results. 

The primary objective of this study was to pilot a method for establishing reliable neural 

markers for ultrasound-based haptics. I’ve found some evidence indicating successful 

SSSEP entrainment – these results however are quite noisy and underlie big variance 

between subjects and conditions. For stronger evidence, however, a refined experimental 

protocol with a bigger sample size is needed. This would make way for statistical analysis 

and generalizability of the findings. 

This work paves the way for understanding the neural correlates of touchless haptic 

interfaces. As a next step, these markers will be compared against ones of conventional 

vibrotactile stimulation to assess their viability and provide a foundation for optimizing 

these interfaces for industry applications.   
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