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Abstract

Touchless interfaces represent a promising advancement in human-machine interaction,
with midair haptic interfaces gaining significant attention. These interfaces use focal
ultrasound (US) beams projected onto the skin to create vibrational sensations, enabling
dynamic haptic feedback through hand tracking. This technology has broad applications
across industries such as automotive, extended reality, medical training, and immersive

marketing.

To the best of our knowledge, this EEG study is first to extend frequency-tagged neural
markers to the domain of ultrasound-based haptics. Specifically, a low-frequency haptic
pulse was employed to drive steady-state somatosensory evoked potentials (SSSEPs) in
subjects EEG, which was then analyzed by spectral analysis and multivariate generalized

eigendecomposition (GED).

EEG analysis results indicate substantial difficulties in entraining the frequency tag, as
no distinct peak in the driving frequency was found in sensor-space. Moreover, power
spectral density (PSD) analysis reveals a suppression in the driving frequency both in
absolute values and partly also relative to ipsilateral sites for some cases. GED analysis
however, points towards an entrainment of the driving frequency in accordance with the
somatosensory template. Additionally, highly variable results between and within
participants were observed in terms of PSD estimations and GED components, which are

discussed in the limitations section.

Despite the inconclusive results, this pilot study provides valuable insights for informing
a refined experimental protocol for large-scale execution on establishing reliable neural
markers for ultrasound-based haptics. This conceptual foundation can be used to
generate comparability with traditional haptics on a neural level, making way for

investigations of cognitive processes such as attentive biases in operator systems.
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Introduction

Touchless haptic interfaces, such as those produced by Ultraleap, represent a significant
advancement in human-computer interaction technology. These interfaces allow users to
experience tactile sensations and control devices without physical contact. Leveraging
ultrasound technology, touchless haptic interfaces create a more immersive and hygienic
(imec, 2020) user experience across various applications, from virtual reality to
automotive industry (Large, Harrington, Burnett, & Georgiou, 2019). In automotive
applications, integrating ultrasound-based haptics into gesture control systems offers
significant advantages. For example, Bosch and Harman Group are developing systems
that allow drivers to control various in-vehicle functions through hand gestures detected
by devices like the LEAP Motion Controller. (Ultraleap, 2019). The company argues that
this setup minimizes the need for drivers to look at or touch physical controls, reducing
visual demand and potential distractions. (Shakeri, Williamson & Brewster, 2018).
Focused ultrasound provides precise tactile feedback, improving usability and safety.
Another promising application is to use haptic feedback as an alert signal. Picture a
vehicle driving in autonomous mode. Suddenly, the conditions change, and the driver
needs to be prompted to take back control of the machine. A haptic alert can augment the

traditional modes of interaction, such as visual and auditory.

The evolution towards touchless haptics was driven by the need for more intuitive and
natural user interfaces. In the 2000s, research into the use of ultrasound to create tactile
sensations in mid-air gained momentum.[(Hoshi, Iwamoto, & Shinoda, 2009), (Hoshi,
Takahashi, Iwamoto, & Shinoda, 2010), see (Chouvardas, Miliou, & Hatalis, 2008) for
review]. This led to the founding of Ultrahaptics, now rebranded to Ultraleap, in 2013 as
a spin-off of the University of Bristol.

Touchless haptic interfaces utilize ultrasound waves to create tactile sensations on the
user's skin. The technology involves an array of ultrasonic transducers that emit high-
frequency sound waves. These waves converge to form precise points of acoustic radiation
pressure, which can be felt as tactile sensations by the user. Acoustic pressure is
interpreted by the same sensors — called mechanoreceptors - that detect tactile sensations.
Mechanoreceptors in the human skin, such as Meissner corpuscles and Pacinian
corpuscles, respond optimally to specific frequency ranges. Meissner corpuscles are
sensitive to light touch and low-frequency vibrations around 30-50 Hz, while Pacinian

corpuscles detect higher-frequency vibrations in the range of 250-350 Hz. These
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mechanoreceptors work by converting mechanical stimuli into electrical signals that are
transmitted to the brain, allowing us to perceive touch and vibration. (Abraira & Ginty,
2013). Ultrasound-based haptics can precisely target these receptors by emitting sound
waves at their optimal frequencies, thereby creating realistic and detailed tactile feedback

without the need for physical contact.

By modulating the amplitude and phase of the ultrasound waves, the system can create
various textures and sensations, simulating the feel of buttons, sliders, and other

interactive elements. (Carter, Seah, Long, Drinkwater, & Subramanian, 2013).

A key component of Ultraleap's system is the Leap Motion Controller, which tracks hand
movements with high precision using infrared sensors. This data is then used to adjust
the ultrasound waves in real time, ensuring that the tactile feedback corresponds
accurately to the user's hand position and movements. This integration of hand tracking
and haptic feedback enables users to interact with virtual objects as if they were

physically present.

Haptic interfaces in operator systems are widely adapted in commercial and industrial
applications. The most common mode of haptic interface is the vibrotactile one: Utilizing
small actuators that produce vibrations, most commonly based on rotary or piezo-based
architectures. Piezo-based haptic actuators produce precise and rapid tactile feedback by
converting electrical energy into mechanical motion. (see Song et al., 2023 for review).
Pneumatic haptic interfaces use air pressure to create tactile sensations by inflating and
deflating small air bladders. Pneumatic systems are effective in simulating realistic
textures and are commonly used in medical training simulators for replicating the feel of

human tissues. (See Sénac et al., 2019).

Ultrasound-based haptics distinguish themselves from pneumatic and vibrotactile
haptics by providing contactless tactile feedback, essentially decoupling haptic sensations
from physical surfaces and offering significant advantages in hygiene, versatility, and
user experience. As this technology evolves, integrating neural markers becomes crucial
to optimizing and validating these haptic systems, ensuring that the tactile feedback
aligns seamlessly with the user's cognitive and neural responses, thereby enhancing the

intuitiveness and effectiveness of the interactions.



TAGGING ULTRASOUND-BASED HAPTICS 5

Establishing Neural Markers for Touchless Haptic Technology

To fully understand and optimize touchless haptic interfaces, it is best practice to
establish neural markers that reflect the brain's response to these stimuli. Frequency
tagging is a method employed in the cognitive neurosciences, which involves the
presentation of periodic stimuli at specific frequencies to evoke steady-state evoked
potentials (SSEPs) in M/EEG. [(Nozaradan, 2014), (Wieser, Miskovic, & Keil, 2016)].
Frequency tagging relies on rhythmic sensory stimulation that can be observed in the
spectral domain of the EEG signal. Stimulation thus does not need to be time-locked to
specific experimental events or produce temporal markers against which the EEG signal
can be investigated. This is convenient, since we could not reliably link the ultrasound
stimulation system with the EEG system to yield precise temporal markers of

stimulation.
Frequency Tagging and Steady-State Evoked Potentials (SSEPs)

Frequency tagging leverages the phenomenon that a sensory stimulus modulated at a
specific frequency leads to neural oscillations, which map onto the stimulation frequency.
When a stimulus is presented at a constant frequency, a neural oscillation of the same
frequency is entrained in the brain. This phenomenon holds true in the visual (Norcia,
Appelbaum, Ales, Cottereau, & Rossion, 2015), auditory [(Drijvers, Jensen, & Spaak,
2021), (Vos, Collignon, & Boets, 2023)], somatosensory [(Brickwedde, Schmidt, Kriuger, &
Dinse, 2020), (Breitwieser, Kaiser, Neuper, & Miller-Putz, 2012)] and nociceptive domain
(Colon, Legrain, & Mouraux, 2012).

This entrained activity is then called SSEPs and can be found in the spectral analysis of
the M/EEG signal. For example, a 24 Hz visual flicker stimulus entrains a 24 Hz
oscillation in the visual cortex. A 13 Hz modulated tone entrains a 13 Hz oscillation in the
primary auditory cortex. Notably, the power of the entrained frequency component
depends on the asserted attention and the natural tuning to the frequency. For
somatosensory stimuli, Tobimatsu et al. (2019) have found 21 Hz to be the optimal
frequency for maximizing the amplitude of steady-state somatosensory evoked potentials

(SSSEPs).

This pilot aims to test whether this technique can be extended to the ultrasound-based
haptic domain. To apply frequency tagging to touchless haptic interfaces, the plan was to

project flickers of haptic touch onto the palm of the hand and see whether SSSEPs
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manifest in the somatosensory cortex. This way, one wouldn’t have to worry about a lack
of synchronization of the EEG system with the Stratos array, as the oscillations manifest
after approximately 500 milliseconds and remain stable while the flicker continues.
(Brickwedde et al., 2020). With this consideration in mind, a rough time-lock of stimulus

onset would suffice for a frequency decomposition of the following period of 20 seconds.

Analyzing the entrained SSEPs will provide insights into how the brain perceives and
processes touchless haptic feedback, informing the optimization of these interfaces for
various applications. Establishing these neural markers is essential for advancing the
development of touchless haptic technology, ensuring that it not only mimics physical

touch effectively but also integrates seamlessly with human sensory processing systems.

In summary, this pilot was conducted to test whether somatosensory SSEPs can be used
as neural markers for Ultrasound-based haptic stimulation. To test for manifested SSEPs,
an US-based flicker stimulus was projected onto participants hands - Taking the
contralateral processing of somatosensory stimulation into account, we expected to
retrieve the tag on sites contralateral to the stimulated hand in the centroparietal sensors
lateral to the midline. (Hari et al., 1990). The relative power distribution of this band was
expected to differ significantly between participants and conditions due to idiosyncratic
variance in perceiving the stimulus across the experiment. However, a peak in 3Hz is
expected across conditions and participants. In GED, component maps with strong

weighting in the respective region of interest (ROI) are expected.

Methods
Materials

The study utilized the Ultrahaptics Development Kit 1 (UHDK1) by Ultraleap, specifically
designed for touchless haptic feedback. This system employs focused ultrasound (US)
beams to create tactile sensations in midair, allowing users to feel virtual objects and
textures without physical contact. The UHDK1 includes the Stratos haptic array, a
sophisticated device that projects highly focused ultrasound beams onto the user’s skin.
The array is capable of generating a wide range of tactile sensations, including simple
shapes like triangles and spheres by precisely controlling the ultrasound beam’s focus and
movement. Additionally, the system incorporates a hand tracker, which enables the
device to map the haptic sensations onto the user’s hand and follow its movements. This

feature makes the haptic feedback non-stationary, dynamic, and adaptable to the user’s
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movements, enhancing the realism and responsiveness of the virtual touch experience.
Ultraleap’s Stratos platform utilizes ultrasonic transducers operating at 40 kHz to create
mid-air haptic sensations. This carrier frequency is modulated by a 200 Hz signal, which
affords interpretability by human mechanoreceptors. The transducers emit focused sound
waves that converge to form tactile feedback, which can be felt by the user’s hands without
physical contact. The technology leverages the patented Time Point Streaming (TPS) to
enable high-refresh-rate and complex haptic feedback, allowing for detailed rendering of
3D shapes and textures. In total, the UHDK1 array featured 256 transducers. (Ultraleap,
n.d.).

40 kHz Carrier Signal modulated by 200 Hz
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Fig. 1: A schematic of a 40 kHz ultrasound pressure wave (blue) by a 200 Hz modulation signal (red) to create
perceivable mid-air tactile sensations.

For EEG data acquisition, the ANTNeuro eego™mylab system with a 64-channel
configuration and 1024 Hz sampling rate was employed. (ANTNeuro, n.d.). Additionally,
an EOG sensor was integrated in the acquisition, making the total number of active
sensors 65. Electrodes were positioned according to the international 10-20 system. The

eego amplifier is actively shielded to minimize 50 Hz line noise.
Participants

Nine subjects participated in this pilot study, but six data sets were discarded due to
flawed acquisition and changes in the experimental design, leaving three data sets
suitable for analysis (n = 3). Participants sat with their hands comfortably placed on a
custom handrest with a cut-out designed to allow the ultrasound waves to reach their
hands unhindered. They were instructed to adjust their hand position to maximize the

subjective sensory sensation, and this calibration was repeated after switching hands.
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Procedure

The main body of the experimental design consisted of four conditions with five 40-second
trials each. The ultrasound flicker was successively directed to the palm and fingers of
both the left and right hand. Each trial comprised two 20-second periods, with a 2 Hz
flicker followed by a 3 Hz flicker. The only variable within a trial was the flicker frequency.
To keep participants attentive, they were instructed to lift a finger of the contralateral
hand upon sensing a change in frequency. Additionally, a 60-second baseline period was
recorded before the flicker trains. Lastly, Participants were asked which hand placement
resulted in the strongest sensations and the preferred location was used for 60-second

continuous stimulation.

Leap Motion Controller Cradle

P
<

Transducer Board

Status LED

Fig. 2: Upper left: UltraHaptics Development Kit 1 (UHDK1) with an integrated
Leapmotion handtracker of the same firm*. Upper right: Transducer- close-up of the
device as used in the study. Lower left: A snapshot of the experiment being conducted.
Note the gap between hand and the cut-out of the box. Lower right: Haptic air pressure
is generated by constructive interference of mechanical waves forming focal points in
the air*.

Preprocessing

Raw time-series was inspected visually. Then, data was filtered off-line between 1 and 40
Hz using a Butterworth band-pass filter. Electrical distance between electrodes was
computed to scan for bridged electrodes. Electrode bridging occurs when two or more
electrodes in an electrophysiological recording system are electrically connected, usually

due to the presence of a conductive substance like sweat or gel spillover. Bridged channels

*: Courtesy of Ultraleap
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carry highly correlated signal and can introduce artefacts and distort the recorded signals.
Therefore, bridged electrode clusters were excluded in a way, such that only one electrode
of a bridged cluster remained. ICA, a computational method used to separate a
multivariate signal into additive and independent components, yielded no troubling
artefactual components and thus all were retained. This method is commonly used for
artefact rejection such as eye- or muscle-based activity. In this case, participants were
instructed to keep their eyes closed and not to move, so components matching the eye

template were only sparsely distributed.

The preprocessed data was epoched into 40-second trials, each consisting of two 20-second
periods. Subsequently, half of the electrodes were removed, excluding the frontopolar,
frontal, parieto-occipital, and occipital electrodes. This reduction in electrode count aimed
to result in cleaner components. Such sparsity approach has proven effective in

minimizing noise in previous work. (Rosso, 2023).
Analysis

Analysis was run on Python 3.12.4 utilizing the libraries matplotlib, MNE, NumPy,
pickle, and SciPy. Data was analyzed by a channel-wise PSD computation and generalized
eigendecomposition (see Cohen, 2022. & Cohen, 2021) using the MNE library in Python
(Gramfort et al., 2013), along with NumPy (Harris et al., 2020) and SciPy (Virtanen et al.,
2020).

For univariate analysis in frequency space, Power Spectral Density (PSD) estimation was
conducted to analyze periodicities and identify dominant frequencies in time-series data.
The Fast Fourier Transform (FFT) was then used for spectral decomposition. Epochs were
trimmed to only include the 3 Hz stimulation period for ease of visualization. The
extracted PSD values of palm and finger stimulation trials from each hand were
aggregated per participant. Six channels were identified as the region of interest (ROI)
per side, located posterior and lateral to the vertex, thus covering the second sensorimotor

cortex. (Left ROI: CP1, CP3, CP5, C1, C3, C5, and right ROI: CP2, CP4, CP6, C2, C4, C6).

Odd-numbered electrodes were on the left hemisphere, and even-numbered electrodes
were on the right. Thus, the left condition featured right-sided (even) electrodes and vice-
versa. Additionally, condition-wise power differences between left and right regions of
interest (ROIs) were inspected. For each condition, the channel-resolved PSDs of the

expected (contralateral) ROI were contrasted against the ipsilateral one. Electrodes were



TAGGING ULTRASOUND-BASED HAPTICS 10

paired, and their power was point-wise subtracted to highlight the relative differences in

brain activity between the two ROIs.

As the second axis of analysis, generalized eigendecomposition (GED) was conducted. This

involves solving the generalized eigenvalue problem defined by the equation
Sw = ARw

where S is the covariance matrix of the signal of interest, and R is the covariance matrix
of the reference signal. The eigenvector w (spatial filter) associated with the eigenvalue A
1s sought to maximize the variance of the signal of interest while minimizing the variance
of the reference signal. If the data are organized in a channels-by-time matrix X, then the
covariance matrix for the signal of interest, S, can be computed as S = XXsT, where Xs is
the signal matrix. Similarly, the covariance matrix for the reference signal, R, is given by

R=X:X:T , where X: is the reference signal matrix.

The goal of GED in this context is to derive a spatial filter w that optimally enhances the
contrast between the signal of interest and the reference signal. This spatial filter is
represented by the eigenvector corresponding to the largest eigenvalue, A which
quantifies the ratio of the variances of the signal of interest to the reference signal. GED
is an advanced algorithm similar to principal component analysis (PCA) but is informed
by the trial design and not bound by the orthogonality assumption of components. Unlike
PCA, which is a blind source separation technique that does not take experimental
conditions into account, GED returns a spatial filter of electrode weights that maximize a
pre-specified contrast, such as differences in spectral power between conditions. By
decomposing covariance matrices from a stimulus and reference condition, GED identifies
spatial filters that maximize the variance between different experimental conditions
while minimizing within-condition variance. This method exploits the contrast defined in
the trial design. Within one trial, two periods of stimulation occur, differing only in one
attribute: the flicker frequency. The thereby entrained steady-state evoked potentials
(SSEPs) define the contrast for this method.

For this, a subset of 30 channels was selected. GED relies fully on the quality of the S and
R matrix whose product is diagonalized by GED. The pipeline of computation is as follows:
Trials were cropped to only feature the 3 Hz stimulation (18 seconds). Per subject and per
condition, all trials were stitched into an array. For S, the time series was band-pass

filtered between 2.5 and 3.5 Hz. For R, the data was kept in broad-band.
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The procedure from this point on is identical for both arrays. The array was segmented
into 2-second parcels, and for each parcel, a channel-by-channel covariance matrix was
computed. All matrices were then averaged to create the S and R matrix for the

subsequent GED. In total, * subjects * 4 condition * 2 = 24 covariance matrices.

The resulting eigenvalues from this decomposition are then sorted in descending order
and normalized against the strongest eigenvalue to form a power ratio. To visualize the
variance explained by each eigenvalue, a scree plot is created, plotting the normalized

eigenvalues against their respective ranks.

Choosing the averaging approach for computing covariance matrices allows for capturing
the temporal dynamics of the EEG signal, which could be lost with a single, global
covariance matrix. Additionally, averaging covariance matrices from smaller chunks can
reveal subtle, time-specific relationships between channels that a whole-series approach
might obscure. This method enhances the sensitivity of GED to detect variations in
spectral power and other neural dynamics, ensuring that transient and periodic
phenomena are accurately represented in the analysis. Importantly, this segmented
approach introduces a nonlinear operation that can capture complex interactions and
nonlinear dependencies in the EEG data, which might not be evident through linear
methods alone. All processing steps were identical for the participants. Code and data

files can be found on the corresponding Github repository.

Results

This study employed generalized eigenvalue decomposition (GED) analysis on EEG data
(n = 3) to trace somatosensory steady-state evoked potentials under four different
conditions of ultrasound-based flicker stimulation: right palm, left palm, left fingers, and
right fingers. The aim was to observe the brain's thereby entrained responses and
compare the spatial and spectral characteristics of the GED components across these

conditions and participants.
Univariate Analysis

Figure 3 shows the averaged Power Spectral Density (PSD) plots for six channels for three
participants under left and right conditions. The main focus is on the 3 Hz stimulation
frequency and its surrounding frequencies to analyze the neural response to the 3 Hz

stimulation. No 3 Hz peak is visible across participants in the provided PSD plots,
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indicating a lack of clear entrainment to the stimulation frequency. Contrary to
expectations, subjects 0 and 5 even show a suppression in the driving frequency in the left
condition. This is peculiar, as it contradicts the hypothesis and workings of SSEPs. Only
subject 1 in the left stimulation conditions shows a slight peak in the driving frequency.
In short, there is no indication of successful entrainment across the participants from

spectral analysis of sensors.

Figure 4 illustrates the channel-resolved power differences between left and right ROI for
each condition. To aggregate left and right hemisphere differences, electrodes were
paired, and their power values subtracted. Positive values read as more power in the
expected ROI, and negative values read as more power in the ipsilateral sites. Subject 0
depicts hypothesis-coherent power differences for right conditions, but curiously enough,
this trend is reversed for left conditions. Precisely at 3 Hz, ROI sensors for left conditions
show weaker power than ipsilateral sites. It is important to note that the two conditions
depict relative relations and are not based on the same data. The patterns in subject O
indicate that in both left and right stimulation, entrainment in the right hemisphere was
dominant relative to the left ROI sensors. Both subject 1 and subject 5 show noisy data
around 3 Hz with a peak in right conditions at 3.3 Hz driven by C6/CP6 sensors. subject
5 also shows a peak in CP5 close to the driving frequency. The positive deflections indicate

that there was higher power in the contralateral sites as opposed to the ipsilateral ones.
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Fig. 3-II: Averaged Power Spectral Density (PSD) for left and right conditions across three subjects, with power
measured in decibels (dB) on a logarithmic scale. The color codes position along the midline. Lighter shades indicate
posterior electrodes whereas darker shades represent electrodes on the vertex. The same color code is applied to both

sides.
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Fig. 4-I1: PSD Difference plots of electrode pairs for left and right conditions across three subjects, with power measured
in decibels (dB) on a logarithmic scale. The PSD of ipsilateral sensors were subtracted from sensors of the contralateral
region of interest. Positive values indicate more power in the contralateral region, whereas negative values point to
lower power. The color codes position along the midline. Lighter shades indicate posterior electrodes whereas darker
shades represent electrodes on the vertex. The same color code is applied to both sides

Multivariate Analysis

It’s expected that conditions involving stimulation on the left side evoke activity on the
right around electrode CP3 and CP4, respectively as these on top of the somatosensory
cortex. Importantly, the components spectral features extracted with GED are not narrow
band. Although one expects a prominence of the target frequency (because electrodes
featuring that spectral content are weighted more), it is still expected to have background
broadband activity - including the individual 1/f curve .WHERE.curve. The 1/f power
distribution, also known as pink noise, describes a signal whose power spectral density is
inversely proportional to its frequency, indicating more power at lower frequencies and

less at higher frequencies. (see Wen & Liu, 2016 for review).

Results reveal substantial variability both within and between participants. Each of the
following figures presents the spatial weights of the first GED component and its
corresponding PSD plot. The PSD was calculated by applying the component weights to
the time series used in the covariance matrix and then performing spectral decomposition.

The spectral peaks in the band of interest (2.5 — 3.5 Hz) remain stable across conditions
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but differ substantially between subjects 0 and 1 by 0.74 Hz, despite both being stimulated
at 3 Hz.

For participant 0, the expected contralateral activation was observed in three out of four
conditions. The exception was the "right fingers" condition, which is characterized by an
obscure spatial pattern. The PSD plots for participant O consistently show a prominent
spectral peak at 2.37 Hz, indicating the frequency at which the maximum power is
observed. Additionally, an unexpected peak at 0.47 Hz was noted, which is the fifth
subharmonic of the maximum frequency. This subharmonic presence might point to an

unusual frequency response not observed in the other participants.

By contrast, participant 1 displayed the expected contralateral activation only in the "left
fingers" condition. Interestingly, the "right fingers" condition exhibited ipsilateral SSEP
entrainment, where the brain activity occurred on the same side as the stimulation. The
PSD plots for participant 1 revealed a spectral peak at 3.11 Hz, aligning with the 3 Hz
stimulation frequency. Participant 5 did not exhibit any notable spectral peaks across its
conditions. This is peculiar, as the PSD is computed from the component-weighted time
series, which is informed to maximize between-matrix variance and thus maximize the
contrast of 3 Hz. The time series should be thus by definition characterized by a strong 3
Hz component. The absence of a notable peak in the PSD for participant 5 suggests that
the component does not effectively capture the informed contrast - possibly due to

individual differences in neural processing or issues related to data quality.

Eigenspectrum Scree plots display the eigenvalues of components in descending order,
showing how much variance each component captures - normalized against the strongest

eigenvalue.

Participant 0 exhibits scree plots with a clear decreasing trend. The first few components
capture the most variance, followed by a steep decline - the typical pattern of variance
distribution. Half of subject 1’s scree plots also demonstrate the expected decreasing
trend, similar to participant 0. Two conditions of subj. 1 however and all of subj. 5
however, output a flat spectrum. indicating that the power ratio (d) is consistent across
all components. This flatness is peculiar as it suggests that no single component explains
significantly more variance than the others. This pattern can arise due to several factors,
including homogeneous data where no distinct patterns or features dominate, or data that

is heavily contaminated with noise, which masks any underlying structure.
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Participant 5 - First GED Component across conditions
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Fig. 5-II: GED component maps for three participants (0, 1, and 5) under all. GED is used to find spatial filters that
maximize the signal-to-noise ratio for specific brain activity patterns. The color coding represents sensor weights, with
the eigenvector projected onto linearly interpolated MNE topoplot objects. Red areas indicate strong contributions to
the component, while blue areas indicate weaker contributions. The accompanying graphs show the Power Spectrum
(dB) for each condition, plotted against frequency, highlighting the distribution of power across different frequencies.
The third row features Eigenspectrum-Scree plots resulting from GED of each condition. It displays the eigenvalues

of components in descending order, showing how much variance each component captures - normalized against the
strongest eigenvalue.

Discussion

This study employed generalized eigenvalue decomposition (GED) analysis on EEG data
(n = 3) to trace somatosensory steady-state evoked potentials under four different
conditions of ultrasound-based flicker stimulation: right palm, left palm, left fingers, and
right fingers. The aim was to observe the brain's entrained responses and compare the

spatial and spectral characteristics of the GED components across these conditions and

participants.

It is first to note that all means of analysis conclude in huge variance of between and
within participants. Visual inspection of the PSD plots and component maps reveals
highly weighted fields bordering the frontal and posterior regions for most conditions.

Notably, the artifactual weighted fields of subjects 0 and 1 in the left finger and left palm
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conditions seem identically localized. Ignoring these strongly weighted regions to focus
solely on the somatosensory template would be hard to defend, necessitating scrutiny of

data quality and the potential influence of non-target regions.

The absence of a notable 3 Hz peak in participant 5, despite the components’ PSD being
computed to maximize contrast at this frequency scrutinizes data quality of this
participant. This is corroborated by a flat eigenspectrum of each condition. Conditions
with a descending eigenspectrum curve - such as for subject O - suggest that the GED
analysis successfully identified components accounting for the most significant variance
in the data, likely reflecting genuine neural responses. The descending eigenspectrum
indicates a clear separation of eigenvalues, where a few components (eigenvectors) are
associated with large eigenvalues, representing significant variance in the data, allowing
for the identification of principal components reflecting dominant neural activities.
Conversely, the flat eigenspectrum conditions in participant 5 and partially subject 1
point towards noise or systematic errors during data acquisition. The flat spectrum lacks

this separation, indicating all components contribute similarly to the variance.

GED component maps vary significantly across conditions and participants. In some
conditions, highly weighted electrodes allude to SSSEPs entrained in the second
somatosensory cortex. Comparing participants' peaks in the GED components with PSD,
only participant 1 exhibits a matching pattern between both modes of analysis, with a
peak in power at 3.1 Hz noted in the PSD of right conditions and difference plots. Subject
0’s component PSD peaks at ~2.4Hz, which is not reflected in the univariate PSD plots.

The most puzzling finding is the apparent suppression of the 3 Hz across participants,
most notably observed in subject 0. PSD lateral-difference plots support fortify this
pattern, as right conditions show an elevated 3Hz power in contralateral sites, whereas
the left condition shows higher 3Hz in ipsilateral sites. This reversal of trend within-
subject is most peculiar and opens many questions. Such suppression is not easily
explained, and I can only speculate it to be attributable to idiosyncratic processing and
the factors elaborated in the limitations section. Further investigation is necessary to
address these anomalies and enhance the reliability of neural markers for ultrasound-

based haptics.
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Limitations

The study design exhibits several limitations, primarily related to maintaining the
subject’s focus and technical implementation. Foremost, the study's low participant count
(n = 3) is important to note, as it substantially limits the interpretability of results.
Further, the small sample size in addition to high variance across the data prevents

meaningful aggregation.
Procedural Issues

Due to limited time and resources, the study employed an improvised setup, commonly
referred to as a "wizard of Oz" approach. This required manual synchronization of event
triggers, with me manually pressing the triggers on both the EEG system and the device
controlling the array simultaneously. This resulted in only an approximate time-lock of
the flicker onset event, potentially affecting the accuracy of the recorded data. The
justification for a roll-out of the study in this state was that steady-state potentials
manifest after about 400 ms and therefore should be detectable within the 20 second
stimulation window. This thought however assumed stability of SSEPs across the
stimulation period, which is arguably invalid, as participants reported feelings of

drowsiness.

The most significant issue was the inability to control for drowsiness during data
acquisition. Previous research has shown that attention significantly affects SSSEP
amplitude, with reduced attention in drowsy states. Participants reported frequent
drowsiness, exacerbated by the instruction to keep their eyes closed. Despite attempts to
mitigate this by instructing participants to lift a finger upon flicker extinguishment,
drowsiness likely introduced confounding variance between and within trials. This
variance could lead to GED components not being comparable across trials, diminishing

the validity of averaging components across trials.

Furthermore, the haptic flickers produced auditory noise at the same frequency, with
noise levels higher in the finger conditions than the palm conditions due to better coverage
of the cardboard packaging box over the device. This noise could interfere with the

detection of SSSEPs.
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Hardware Limitations

Flicker frequencies used for stimulation was limited to low frequencies because higher
frequency settings were deemed to be unstable, missing beats, or varying in frequency
despite constant parameters. This instability raises questions about the accuracy of the
reported stimulation frequencies. When stable enough, this concept could extend to rapid-
invisible stimulation, which operates above the critical flicker fusion frequency of
perception (Seijdel, Marshall, & Drijvers, 2023). Even when using a low frequency of 3 Hz
to drive the pulses, there may be deviations in pulse length or repeat gaps, making it
uncertain whether the stimulation frequencies truly remained at 3 Hz. Ultimately, a way

of validating pulse length needs to be implemented to ensure accuracy and reproducibility.

Conclusion

This pilot study has provided insights into the methodological and technical challenges
associated with tracing ultrasound-based haptic neural markers. Moving forward, several
key areas require focus to realize the full potential of employing SSEPs markers to
ultrasound-based haptics. Firstly, future studies should prioritize the development of a
fully synchronized setup between the EEG system and the ultrasound device, as time-
locking the stimuli affords time-domain averaging of data. Additionally, strategies to
mitigate effects of drowsiness and noise pollution, such as interactive tasks to maintain
participant engagement and improved acoustic shielding, are strongly recommended.
Furthermore, ensuring consistent stimulation frequencies and minimizing deviations of
flicker pulses of the US array will enhance the reliability of SSSEP entrainment, leading

to more robust and reproducible results.

The primary objective of this study was to pilot a method for establishing reliable neural
markers for ultrasound-based haptics. I've found some evidence indicating successful
SSSEP entrainment — these results however are quite noisy and underlie big variance
between subjects and conditions. For stronger evidence, however, a refined experimental
protocol with a bigger sample size is needed. This would make way for statistical analysis

and generalizability of the findings.

This work paves the way for understanding the neural correlates of touchless haptic
interfaces. As a next step, these markers will be compared against ones of conventional
vibrotactile stimulation to assess their viability and provide a foundation for optimizing

these interfaces for industry applications.
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