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Abstract  

Recent advances in cognitive neuroscience have brought forth a novel 

perspective on the control problem, grounding it in associative learning – a 

mechanism largely seen as the dichotomous counterpart of cognitive control. 

An important implication following this theory is that higher order functions 

are subject to the same reinforcement learning principles as lower-level 

behavior. Following this notion, the prediction can be made that humans 

adjust their control parameters based on learned association with contextual 

cues.  

The presents study was designed to explore this prediction by employing a 

fast-paced visual discrimination task featuring two contexts, wherein 

participants were nudged to assume high, and low caution respectively in 

their decision making, which was quantified by the drift-diffusion model. 

Data analysis points towards a null effect, which we attribute mainly to 

flawed design elements and conclude that these need to be catered for before 

a conclusion can be made. 

Furthermore, a simulation-based approach will be proposed, which affords 

the visual investigation of performance of a simulated system informed by a 

particular set of DDM parameters. This was applied to the design and yielded 

valuable insights on the observed null effect, as well as on avenues for 

optimization.
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Chapter 1: 

Theoretical Foundation 

Introduction 

Imagine the following scenario: You spend your morning in a foggy forest, 

hunting for mushrooms. Doing so, your attention is set to detecting the 

generic ovalities of caps, as well as the color and shapes of their stems. 

Upon detection, your focus fixates on the target, confirming it as a true 

positive, and further classifying its kind according to size, color and 

shape. Once you’re sure it’s an edible boletus, you continue your 

inspection on whether it’s a ‘keeper’. To this end, you focus on the details 

of the fungus: the quality of the lamellae, as well as abnormalities 

indicating an infestation. 

Within several seconds, your attentional mechanism shifted its focal 

points from detecting shapes within foliage to classification guided by its 

attributes up to quality grading informed by its detailed state. At each 

stage of your decision, different goals are active and hence lead your 

attentional mechanism to seek for different cues. These shifts of 

attentional focus occur periodically within your hike, as each pick resets 

the cycle to you scanning the foliage. You’ve flexibly adjusted your 

attention dozens of times to align with the currently active goal. 

Let’s consider a second scenario. You stand in front of your fridge and 

sigh at the emptiness of your compartment. Your gaze swings to your 

flatmate’s area, as a full tray of Tiramisu lays there. Enthusiastically you 

take it out, energized with anticipation you lift your fork but then 

hesitate; you stow both instrument and object of desire, put on your 

running gear and go for a jog: You’ve remembered the dietary plan you 

swore to commit to and moreover, you couldn’t (yet again) discard your 

moral values and (yet again) dig into your flatmate’s belongings. 

Although admittedly the latter scenario might be just tangentially 
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scraping the bounds of realism for most of us, it illustrates the human 

capability to marshal behavior to align with higher-order goals. Both 

scenarios, albeit seemingly unrelated at first, illustrate the effects of a 

construct called cognitive control: the capability to regulate behavior 

adaptively and flexibly in order to achieve higher-order goals. 

Conceptualizing Cognitive Control 

Cognitive control can be defined as the capability to orchestrate 

behavior adaptively and flexibly in order to achieve higher-order goals. 

(Botvinick, Braver, Barch, Carter, & Cohen, 2001). The term ‘goals’ in 

this context refers to abstract goal representations, such as within-task 

micro-objectives in respect to which information is classified as relevant. 

The attentional system informed by cognitive control affords a filtering of 

sensory perception distinctly and solely for relevant cues. 

(Luck & Ford, 1998). You filter your visual input for different 

informational cues trying to locate mushrooms, as opposed to during 

quality-grading. Further, it informs under which circumstances not to 

exhibit learned behavior. 

To illustrate, consider you burned yourself grabbing the blazing hot brass 

handle of your skillet. One painful experience was sufficient to create an 

aversion, making you hesitate the next time you reach out for it. 

Cognitive control affords the ability to override such inhibition – 

conditional to the certainty of it being cool. It is crucial to note that these 

goals are far from rigid: Goal representations need to flexibly adapt in 

ever-changing circumstances. In one moment, it is important to scan for 

stems within foliage, and in the next it’s about classification, informed by 

color, girth and size of the fungi. And again, in the very next moment, 

you’re checking the map to remind you of the route, analyzing the finicky 

lines and colors. Such flexibility of swinging seamlessly between goal 

representations also constitutes an important feature of cognitive control. 

(Braver, 2005). 



11 

 

  

Chapter 1 

Another attribute associated with the exertion of cognitive control is its 

subjective cost. This cost can be traced down to the cerebral energy-source 

glutamate. This ‘fuel’ is a valuable and notably depletable resource within 

the central nervous system. Upon depletion of this resource, the efficacy 

of cognitive control substantially weakens. (Westbrook & Braver, 2015). 

The human ability to exert control over our behavior, inhibit urges and 

delay gratification has inspired generations of researchers. By now, it is 

largely well understood how control influences our behavior and which 

factors affect it. However, its underlying mechanisms are still left 

unclear. (Botvinick & Braver, 2015). Incumbent theories put a domain-

general executive system in charge of control processes such as 

attentional filtering, action-inhibition, task switching, conflict 

adaptation, the Exploration-Exploitation-, and Speed-Accuracy-Tradeoff 

(SAT). This control system is conceptualized as being top-down-operating, 

as well as conscious. 

Furthermore, this view posits the attribute of modularity. In such, the 

domain-general control system, control is imposed by a central unit 

specializing in this very function. Applied to the brain, one would be able 

to delineate an area which is serving solely this regulatory purpose from 

regions processing more rudimentary stimulus-response-mappings. 

This means that the controlling cortex would be able to impose control 

onto - but not participate in ‘basal’ stimulus-response processes. 

Hence, imposing control often manifests as the override of well-learned 

and habitual actions, consequently leading to control being set in 

contrast, and even in dichotomy to the concept of learning. To elaborate, 

associative learning is considered to be operating bottom-up: creating 

associations between perceived stimuli and following behavioral 

responses automatically. As illustrated, one does not need to contemplate 

the pain inflicted by the blazing brass handle to conclude that it ought to 

be avoided in the future, as to create that aversive conditioning. 
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Closely related to associative learning, reinforcement mechanisms also 

work based on associative links. Given a reward signal, a phasic upshoot 

in dopamine levels throughout the cortex is triggered. This state 

associates currently active contextual stimuli – informative, as well as 

uninformative ones – with the behavioral response the system carried 

out. Such stimulus-response associations form under the adhesion of 

reward signals. (Law & Gold, 2009; Saddoris et al., 2015). This soar of 

dopamine raises the likelihood of the system again performing the 

reinforced behavior when met with the associated stimuli. The system 

has learned to anticipate a state of high dopamine tonus following that 

particular action; hence it is keen on again reaching that state, and a 

strong predictor for it is performing the reinforced action. This principle 

is a well-established pillar of behaviorism and dates back to Thorndike’s 

prominent law of effect. (Thorndike, 1898; 1911) 

To illustrate, pressing a button can be conditioned as an action predictive 

of the arrival of a rewarding snack. Or to provide a more contemporary 

example, refreshing your social media feed acts as a strong predictor for 

the surge of that precious dopamine induced by the appearance of novel 

colorful images of attractive faces. Although being blessed with the 

capability of wishfully thinking us not to be susceptible to this basal 

mechanism, our reward system succumbs to the same archaic 

reinforcement principles as rodents and pigeons do. 

In conclusion, cognitive control is regarded to be domain-general, 

conscious, top-down-operating, and an effortful mechanism, consisting of 

a set of supervisory processes, which are unidirectionally influencing 

stimulus-response mappings. 

Control Problem 

Conceptualizing both mechanisms in this manner serves to delineate, 

as well as to provide a metaphor to work along with. However, such 

modular perspectives grant little insight into the workings of that 
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‘supervisory agent’. Keeping this homunculus in charge merely 

circumnavigates the question of its underpinning mechanisms, as little 

explanatory value is added by attributing all responsibility of behavioral 

control to a general-purpose agent. The quest to disentangle the 

underpinnings of cognitive control is referred to as the control problem. 

It is established that cognitive control oversees filtering our environment 

for relevant information as well as facilitating the override of habitual 

behavior. As mentioned, there is rich literature on the effects of cognitive 

control as well as its underlying factors. (Verbruggen, McLaren & 

Chambers, 2014). 

Yet, it is not clear what underlies this phenomenon. It is not clear what 

guides this behavior-informing system. To disentangle this problem, a 

major question needs to be conquered: 

‘What informs this informer?’  

Further broken down into primo: ‘What informs it when to act?’ and 

secondo: ‘What informs it how exactly to act? 

Umemoto and Halroyd (2015) for instance approached this problem by 

researching within an environment with multiple task options available. 

They posed the following question: 

a. how does the control system decide what task to execute, and b. how 

vigorously to carry it out? Interestingly, they reported reward signals to 

have a modulatory effect on the exertion of control. This finding 

contradicts the traditional view of the control agent, as reward per 

definition is not supposed to play a role in behavioral control. 

Furthermore, a recent meta-analysis reports that cognitive training 

rarely finds transfer. For one, they report extensive evidence that 

cognitive training improves performance on the trained tasks. However, 

they declare little evidence corroborating the notion of transferability: the 

less related the task in question is to the one subjects have been trained 

on, the less of an effect is observable. Crucially, they report that barely 
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any improvement transfers into everyday cognitive performance. 

(Simons et al., 2016). These findings suggest that training effects stay 

bound to the task-sets they were trained in, challenging the presumption 

of generalizability of cognitive control. Interestingly, such domain 

dependence or context specificity is an attribute of associative learning.  

Not only does this challenge the feasibility of cognitive training, but also 

the very core of the incumbent modular view on cognitive control. 

To make ground for an argument on the feasibility and context-specificity 

of cognitive control, imagine the following scenario: 

On your way to work there is an ill-designed intersection where too much 

happens at the same time: the road lines are not intuitive and there is 

this one billboard which hinders your view to your right. 

The first times you were stressed while attentively creeping forward to 

make your left turn; checking your mirrors every other second until you 

passed. Fast forward a couple months: By now you have adopted a more 

cautious state without really thinking about it. You happen to shift 

towards a more attentive state the moment you recognize the area of the 

intersection. It seems like you learned to adopt a higher attentive state 

in the critical environment. As if a high alert state was stamped onto that 

environment, mediated by the reoccurring need of attentiveness.  

Following the traditional conceptualization of these two mechanisms, the 

system would have to consciously recruit a state of heightened awareness 

every time it enters the intersection. Such a state would always have to 

be preceded by the aware need for a state of heightened attentiveness, 

resulting in an effortful recruitment of same.  

In 2016, Abrahamse and colleagues posited a new approach for taking on 

the control problem. In their report, they review an array of studies which 

violate the predictions of a modular perspective: Control being susceptible 

to reward signals, being context specific and being manipulatable in the 

absence of awareness. (Abrahamse et. al., 2016) 
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Curiously, these are the very features underlying associative learning. 

Moreover, these are the very attributes cognitive control was set in 

contradiction to. Building upon these findings, Abrahamse et al. inferred 

that the nature of cognitive control and associative learning might not be 

as distinctly separated as assumed and rather have the very same 

mechanisms constituting their core – positing the hypothesis that 

cognitive control might be embedded into associative learning. 

An important prediction that follows this notion is that higher level 

control functions are subject to the very same reinforcement principles as 

lower-level behaviors and furthermore, that people regulate their control 

parameters based on learned associations with contextual cues. To 

illustrate, let’s again picture that busy intersection. You reacted with 

high attentiveness and caution to a stressful situation and experienced 

the pleasurable outcome of passing unharmed: The control (network/ 

system) subsequently associated its parameter configuration (high 

caution) and the resulting behavioral implications (frequent checking of 

the mirrors, slow pace, etc.) with the context it occurred in. This results 

in an associative network binding context, response, and the overarching 

strategy. Subsequently, every time you approach the intersection, 

contextual cues trigger this network. Upon activation, it retrieves the 

embedded cognitive strategy, subsequently aligning your behavioral 

response to correspond to the overarching control parameter: being 

cautious. 

In general, this network consists of three elements: perceptual, motor and 

goal representations. Contextual features embed as perceptual 

representations, actions taken as motor representations and active 

cognitive strategies as goal representations. Upon a favorable outcome of 

an action taken, momentarily active contextual features – informative as 

well as uninformative ones – are embedded as the base of the control 

network. The active goal representation can be reconceptualized as the 
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present cognitive strategy – may it be pronounced caution or a high 

readiness to switch tasks. 

This strategy is embedded next to the contextual features and the 

executed motor representation. The reward signal remains in its 

traditional role of the adhesive component which induces as well as 

facilitates the construction of this network. In this vein, the learning 

perspective maintains the very same views on control representations. 

But most crucially, it provides explanation for the domain-dependence 

and lack of transfer via the context-bound embedding of control functions, 

rather than with a multitude of specific control processes acting solely in 

their respective competence. Similar arguments for a distributed view on 

cognitive processes were made by Eisenreich (2017) in his paper 

scrutinizing the modular conceptualization of the brain. 

One important prediction that follows this control model is that people 

regulate their control parameters based on learned associations with 

contextual cues. To our knowledge, Braem (2017) was the first to provide 

behavioral evidence in favor of this hypothesis. The author reports having 

conditioned subjects to express a higher tendency of task switching 

behavior after disproportionally rewarding alternating tasks versus task 

repetitions. 

In a free-choice testing phase, subjects were more likely to alternate tasks 

when this strategy was reinforced in the previous phase of the 

experiment. He concludes that reward indeed exerts a modulatory effect 

on task switching. Several studies conditioned stimuli to act as control-

informing markers. Verbruggen and colleagues for instance associated 

stimuli to act as inhibitory markers, and as markers for raised attentional 

control. (Verbruggen & Logan, 2008). 

Furthermore, Braem and colleagues reported that novel task instructions 

were more easily adopted in an environment, which was previously 

associated with a higher occurrence thereof. (Braem et al., 2020). 
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In order to adopt a new task instruction, a suitable goal representation 

needs to be generated, consequently replacing the former one. The new 

behavioral response subsequently shifts to being informed by this novel 

set of goals. He concludes that a higher readiness of running this 

integrative process was associated with a contextual cue, as subjects 

required less time to adopt new instructions in the trained context as 

opposed to controls. 

More recently, Prével and colleagues (2021) reported a modulating effect 

of reward signals on conflict processing. This function of resolving conflict 

is essential to shield us from distracting information or prepotent 

response options, therefore contributing to the maintenance of goal-

directed behavior. 

Prasad and Mishra (2020) reported reinforcement playing a mediating 

role on control on the masked priming effect. Prior reward association of 

a given stimulus modulated the perceptual saliency of same in a non-

reward testing phase.  

Contemporary approaches to investigate the extent to which cognitive 

control can be conditioned mainly relied on blocked designs: throughout 

dozens of trials the subjects gradually learned to associate the stimulus 

with a particular expression of control. These learned associations were 

then again tested in a blocked manner. 

The present study explores the possibility/attempt of conditioning control 

parameters beyond the realm of stable learning environments.  

To this end, an environment has been designed where the stimuli are 

presented in one of two locations, which we’ll further refer to as contexts, 

or condition. Each context has its own reward policy, and the presentation 

of contexts fluctuate trial-by-trial / on a trial level, with the policies 

remaining stable within -context.  

The reward policies incentivize different cognitive strategies. Therefore, 

it was advantageous to exert a particular strategy in context 1 and to 
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apply the converse approach in the other. Rephrased, upon context swing 

it was optimal to also adapt the strategy and parallelly shift the 

expression of control. It is crucial to understand that the same response 

can be evaluated differently in each context, therefore – to behave 

optimally, one had to pick up this difference in reward signals and adapt 

the strategy accordingly. This study first ought to investigate whether 

humans are capable of detecting this delta in reward signals within such 

a volatile environment. Building upon this, we aim to explore whether 

humans are able to adopt these optimal strategies and swing between 

them trial-by-trial. Thirdly, we aim to answer the question, whether such 

goal-representations get associated with the context, and if they transfer 

and remain stable in the absence of reward. 

To this end, we engineered a task design incorporating three attributes 

of associative learning: reward-sensitivity, contextual dependence, and 

the absence of awareness. The strategy we chose to investigate is the 

expression of a strategy called Speed-Accuracy-Trade-off or rephrased as 

cautiousness.  

The Speed-Accuracy-Tradeoff 

 The Speed-Accuracy-Tradeoff – further referred to as SAT – describes 

the cognitive strategy to either prioritize accuracy or speed in decision 

making. On one end of the spectrum – emphasizing accuracy over  

speed – a higher accuracy across multiple decisions is generated but 

speed sacrificed, entailing slower response times. This is counterposed by 

emphasizing speed, yielding quicker response times with the tradeoff of 

having a higher probability of erring. Gaining pace in decision speed 

entails the sacrifice of accuracy across trials, resulting in a higher error 

rate. To illustrate, let’s regard a scenario way back in Paleolithic times. 

Our protagonists are Bert and Bob, two Neanderthals working as 

gatherers for their tribe.  
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One day, as usual, Bert takes his basket and sets out to forage. While 

collecting fungi he is cautious in his decisions. Each fungus needs to be 

inspected thoroughly to ensure its edibility, as erring, viz. returning with 

inedible ones would lead to physical unease at best and poisoning at 

worst. While foraging, he begins to traverse into the territory of a rival 

clan, unmistakably marked by a peculiar kind of pointy trees. His 

mindset changes into wanting to quickly fill up his basket, as it is 

advantageous to spend as little time as possible in such a dangerous area.  

Finally, Bert returns to his home cave and hands over his yield: The cook 

is upset, as he had to filter out way more wrongly picked mushrooms than 

usual.  

How can that be? The larger number of erroneously picked mushrooms in 

Bert’s basket can be explained by a shift of control parameters informing 

his decision making. By being in an uncertain and possibly dangerous 

environment, he adjusted his expression of SAT towards the speed pole, 

emphasizing speed over accuracy. Simply due to the rule of thumb ‘the 

more time you spend in a dangerous area, the higher the probability of 

finding out why it is known as such’. 

This unaware adjustment of his caution parameter enabled him to 

optimize his behavior in alignment to the situation he was in as well as 

the goal under which he was operating: Emphasizing a quickly filled up 

basket, taking the risk of lower accuracy doing so. 

However, his cousin Bob sadly did not evolve to express such flexibility in 

his cognitive control parameters. Bob set out to forage and similarly 

ended up in an area under the control of a rival clan. As opposed to his 

cognitively flexible cousin, Bob did not adjust his SAT. He thoroughly 

inspected every fungus, which led to him spending additional time in this 

area. Consequently, Bob was spotted by a hostile scout and ambushed on 

his way back, never returning. 
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Mourning, Bert promises vengeance against his cousin’s assassins. 

Again, he sets out to forage, but this time he remains in the clan’s area, 

avoiding the path he once took. As he further wanders, he notices the 

same kind of peculiar trees which marked the enemy’s territory, however 

still being in allied space. This thought soon fades while he continues 

filling up his basket. 

To his surprise, he gets scolded by the cooks as he returns: Again, they 

found more inedible mushrooms than usual. Why didn’t he spend more 

time selecting? He might as well have spent the normal time doing this 

task, probably coming back with more utilizable ones. Instead, he was 

back early, his yield speckled with inedible fungi. In disbelief, Bert looks 

towards the sky and realizes that in fact he returned much earlier than 

usual. Why didn’t he take more time in his decisions, he wonders. 

Following the associative learning perspective, Bert associated the goal 

of expressing a lower degree of caution with the contextual cue of that 

peculiar kind of tree. The tree was encoded as a contextual stimulus for 

triggering a low caution during decision making. 

 Then, without him being 

aware, this control network 

was triggered while executing 

the same task, being 

surrounded by the same 

contextual stimuli. This 

subsequently informed his 

control parameters and led to 

him swinging from expressing 

a high degree of cautiousness 

to the converse. With this goal active, he took less time deciding and 

raised his error rate. 

Fig. 1. Bert’s yield in three scenarios. The plot 

codes accuracy on the y-axis and speed on the 

x-axis. Each triangle is characterized by a 

different position on the Speed-Accuracy-

Tradeoff.  
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Bert associated the context he was in with the goal representation 

informing his behavior. This led to him responding appropriately to the 

environment at hand. The attribute of domain dependence activates the 

network when encountering the embedded contextual stimulus. In Bert’s 

case, a particular type of tree triggered the previously created network 

for lowering his caution in picking fungi (Fig. 1). 

Presumably, Bob would not be underperforming in this novel setting as 

he would have remained cautious. Being cognitively inflexible, he would 

have kept foraging as usual – slowly and accurately. Unlike in Bert’s case, 

no control network would have been formed and consequently couldn’t 

have subliminally driven control parameters based on contextual 

markers. Sadly, one wouldn’t be able to test this notion, as – crucially – 

Bob is dead. 

Computational Modeling 

The Speed-Accuracy-Tradeoff can be further characterized not only by 

response times (RTs), but also the variance thereof – both for correct and 

erroneous decisions taken. From this decomposition, a peculiar pattern 

emerges: Fast decisions result in a lower variance of their response times, 

contrasted by a wider spread of RTs in slow decisions.  

(Heitz, 2014 for review).  

To explain such peculiarities, cognitive researchers employ 

computational tools which model the process in question and thereby 

provide insights into its underpinnings. This model consists of an 

algorithm which formalizes the problem in computational terms by 

removing all irrelevant features of the decision process and only 

incorporating the presumably relevant ones. This reduction in complexity 

is simply due to the notion that one cannot capture the working of each 

synapse within the control network; one does not have insight into the 

cognitive system, so its workings need to be approximated by reverse 

engineering. 
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Each model includes several parameters, which are assumed to 

approximate cognitive components relevant for the decision process. 

These parameters ought to capture the influence of real word factors 

substantial for the process in question. 

In the following section, I will first introduce unidirectional race models. 

These systems model processes for instance, wherein one ought to 

recognize an object varying in informational quality through a reduction 

of same. This reduction can be created by the injection of Gaussian noise, 

or by simply removing parts of the image. Essentially, the decision is 

made when enough evidence for the nature of a distorted image is 

accumulated. 

Subsequently, build upon this concept to introduce a numeric tool used 

for computational modeling of bi-optional decision making processes. 

Unidirectional Recognition Models 

As mentioned, the informational quality of the presented stimulus is 

assumed to hold relevance for the decision making process. To illustrate, 

picture a task wherein you are instructed to hit a button the very moment 

you recognize the nature of the two stimuli of figure 2: 

Both depict the same object but differ in informational quality. Stimulus 

1 can be classified easily.  

However, stimulus 2 – providing less 

information – offers lower quality of evidence 

and hence demands more time to be recognized. 

A model using only this parameter would 

predict the average response time for high 

evidence images to be substantially faster than for lower quality stimuli. 

level of integration rises until a threshold is reached, initiating the 

decision. The amount of evidence needed to reach that bound represents 

the second parameter of this model – alpha (α). A higher bound means 

that more evidence is needed – the system takes longer to reach certainty. 

Fig. 2. Stimulus set 1. 
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This ‘race’ towards the decision threshold is the eponymous attribute of 

this model. Lastly, the time between stimulus onset and start of the 

decision process is called non-decision time – encoding period – and will 

also be referred to as theta (θ). 

To summarize, our model decomposes 2afc decision making into the 

following parameters: 

a) bias z, b) non-decision time θ, c) rate of evidence accumulation δ and  

d) vertical distance from starting point to the decision threshold α. 

Integration level is coded on the y-axis and accumulates over time, which 

is depicted on the x-axis (Fig. 3). The accumulation of evidence over time 

draws from the notion of sequential sampling: at each time step t, the 

system integrates presented evidence. 

Upon stimulus presentation, your visual system claims some time to 

sensorially process and encode the presented stimulus – accounted for by 

the parameter theta. From that point on, the decision process commences 

at starting point z. 

The evidential quality of the stimulus informs the rate of deliberation, 

visualized as the accumulation of evidence ‘racing’ towards the decision 

bound. The higher the evidential quality, the more information can be 

extracted per time step, which results in a steeper integration-slope.  

Fig. 3. Schematic of a rise-to-threshold model applied to a recognition tasks. 
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Keeping all other parameters constant, both increasing the slope δ and 

raising the starting point z decreases the response time, as the former 

leads to a steeper integration and the latter reduces the size of the 

decision space α and hence shortens the distance needing to be covered. 

Additionally, increasing α results in the need for more evidence having to 

be integrated to initiate a response. Consequently, the decision process 

demands more time. We can formalize response time t as a function of the 

distance α in respect to slope δ and the nondecision time θ:  

𝑡 =
𝛼

𝛿
+  𝜃.  

Crucially, the equation above holds true only in the absence of noise. 

In a noise-free world, deliberating the same stimulus under a fixed set of 

parameters would always take the same amount of time. 

Unfortunately, we happen to exist in a noise-riddled environment. Hence 

it is assumed that all sensory input we process is noisy, consisting of noise 

and signal. Signal, or information, is all sensory input relevant for our 

decision – in our case the ‘isolated’ representation of the stimulus. Noise 

on the other hand is the umbrella term for essentially everything else 

effecting the process. This can be internal physiological noise influencing 

the efficiency of our visual processing system, or intrusive thoughts – 

regardless of valence – surfacing, pulling attention away from the 

decision making process. Furthermore, bodily factors such as even slight 

hunger or completely external ones such as the audible weeping of a 

toddler nearby. Also, everything perceived in peripherical vision can 

constitute distractors. 

Crucially, one has no way of knowing the individual influence these 

distractors entail. Noisy constituents are too vast to capture or to model, 

hence one reverts to subsume all these factors under one term, which then 

again can be incorporated into a model: statistical noise.  
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As we’ve seen in the introduction, response time distributions deviate 

more for slow decisions as opposed to fast ones, so the model needs to be 

further modified to account for this phenomenon. This is achieved by 

introducing noise into the model. 

To illustrate, regard again Fig. 3: Both slopes/integrators start from the 

same point and must accumulate the same amount of evidence (α) to 

reach the decision boundary. Both parameters α and z stay constant, 

varying only in their integration rate delta: 

System 1 integrates at a higher rate, depicted as a steeper slope. Due to 

its delta being higher compared to system 2, it reaches its decision bound 

faster on average. System 2 operates with a lower delta and consequently 

requires more time to reach its boundary – deciding slower. Due to its 

decision taking longer, it is likewise exposed to the influence of noise for 

longer. The longer the exposure, the stronger response times deviate and 

the larger the variance across trials will be. 

Noise is implemented as a constant factor and its influence stands in 

direct proportion to time passing. 

This relation is visualized in figure 3 through the ribbons around each 

integrator. The slower a system integrates, the wider the ribbon becomes. 

Therefore, race models predict a higher variance of response times for 

slower responses, operating with a flatter integration slope. Conversely, 

decisions steered by a steep integrator slope occur quicker, entailing a 

lower deviation of response times. 

With this relation in mind, our model offers an explanation for the 

observed variance patterns by decomposing a complex process into 

several subsets of it. The outlined race model attributes the occurrence of 

deviating variances to noisy interference modeled using a linear buildup 

of statistical distortion within each decision. 

Crucially, such conceptualization of noisy interference implies that said 

pattern is not set in stone, as the depicted ribbon represents one standard 
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deviation from the mean – meaning that only 68.3% of the observations 

are expected to occur within the respective ribbon. Consequently, the 

model predicts 31.7% of all observations to occur outside of it. 

Therefore, it is quite plausible to observe a slower outlier of system 1, as 

well as a faster outlier of system 2, resulting in the ‘slower in nature’ 

system 2 responding faster than system 1. Under the assumption of 

Gaussian noise, individually unlikely observations become expected 

across a vast number of trials. 

By now, I’ve outlined the application of race models within recognition 

tasks. The response was initiated upon stimulus classification. Within 

the decision process, evidence was sequentially sampled – and 

incrementally accumulated until a threshold was reached which led to 

decision onset.  

Building upon this foundation, race models can be extended to model 

decision processes between two choices – these architectures are referred 

to as drift-diffusion models. 

Drift-diffusion model  

Bioptional modeling adopts many characteristics of its unidirectional 

counterpart, as it also assumes the integration of evidence towards a 

constant threshold. Drift-diffusion models double the decision space each 

decision occurs in by introducing a second bound. Consequently the 

integrator activity can race towards either: its operational space now 

spans between the two bounds and its starting point being located 

centrally at time point 0. 

Depending on the model configuration, bias z can shift towards either of 

the bounds, hence ‘biasing’ the decision process by reducing the distance 

to the respective bound. This property is the namesake of z. 

Bidirectional models operate in the realm of tasks which offer two 

response options and presume a decision at every trial. The umbrella 

term for this task paradigm is “two-alternative forced-choice task” (2afc). 
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A bidirectional race model models a decision taken between two choices, 

formalized as upper and lower bound. 

A common 2afc task is the visual discrimination task, consisting of a 

stimulus which must be classified as belonging to one of two categories. 

The present study uses such a paradigm, wherein one ought to decide on 

the dominant color represented in a dot cloud (Fig. 4).  

The difficulty of such visual discrimination is defined by the color 

coherence. High coherence represents a low difficulty as opposed to low 

coherence, which is substantially harder to differentiate as the ratio of 

the colors converges toward 1:1. 

Let’s model a trial of this task using the DDM framework: Succeeding the 

stimuli onset, a stimulus encoding period theta precedes the decision 

process. Subsequently, the integrator starts the deliberation of the 

stimuli: Depending on the informational quality of the stimulus, evidence 

toward one or the other choice is accumulated with rate delta. The better 

the evidential quality, the easier the stimulus deliberation. This leads to 

a higher integration rate and ultimately results in a faster decision. To 

use different wording: evidence for each bound competes with each other. 

When evidence towards one bound substantially overpowers its 

competitor, the integrator has an easy time deliberating the stimulus 

which allows for a rapid decision. 

Fig. 4. Target stimulus 1 with a color 

coherence of 70% (blue). 
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Again, this process is subject to noise, so that decisions informed by the 

same drift rate do not always terminate at the same time  

(producing RT distributions) and do not always terminate at the same 

boundary (producing errors). (Ratcliff & McKoon, 2008). 

In this paradigm, the level of integration is subject to forces towards both 

bounds, resulting in upward, as well as downward directed movements. 

Visualized, the integrator performs a wiggly drift reminiscent of a 

Markovian random walk (Fig. 5). This drift is the name giving attribute 

of bidirectional Rise-to-Threshold models: drift-diffusion models. 

The parameter delta is reconceptualized into drift rate: i.e., the 

rate/vector at which the drift strives towards the correct boundary. This 

again is determined by the quality of the sensory evidence with its lower 

bound being at null: Such a null-drift-rate is present while trying to 

deliberate an indifferentiable stimulus. I.e., a fully coherent stimulus 

consisting of an equal representation of either color. 

Importantly, drift-diffusion models do not operate with one fixed drift 

rate. Rather, drift rates vary randomly across trials in a stable pattern or 

Fig. 5. Schematic of a Drift Diffusion Model decomposing a decision into non 

decision time and noisy evidence accumulation. 
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probability distribution. The shape of this distribution is informed by the 

stimulus’ evidential quality. 

Each trial, a delta value is sampled from its distribution. DDM accounts 

for noise by this implementation of parameter sampling. 

As mentioned, the drift does not always terminate at the same boundary. 

This occurs when noise is perceived as information and the integrator 

accumulates evidence toward the incorrect bound. The harder the task 

difficulty (the lower the coherence), the higher the probability of erring. 

To illustrate, consider a novel stimulus: 

Regard again stimulus 1 (Fig. 4) and stimulus 2 (Fig. 6). The former 

stimulus is easier to discriminate, as it provides stronger sensory 

evidence, whereas discriminating stimulus 2 can be considered to be more 

difficult, because it provides less evidential quality (a lower difference in 

colored dots). Hence a system would integrate the evidence of stimulus 1 

faster (operating with a higher drift rate), resulting in quicker response 

times. Conversely, increases in task difficulty lower the drift rate, which 

leads to increases of average RT and a decline of accuracy rates. 

Again, the quicker a decision is taken, the less noisy interference occurs 

to the deliberation process, producing a lower variance.  

Stimulus 2 is less evident by nature, which consequently lowers the drift 

rate steering its deliberation process. A lower drift rate again results in 

more time required to reach the necessary level of evidence, leaving a 

larger temporal window for noise to exert influence: Response times 

deviate greater. 

Fig. 6. Target stimulus 2 with a color 

coherence of 52% (blue). 
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Boundary separation within drift-diffusion models define the vertical 

distance separating both boundaries (Fig. 5), therefore constituting the 

space the drift can occur in. Reducing α means that less evidence is 

needed to initiate a decision. Consequently, this lowers average response 

time, while also increasing error rate across trials. 

This is a product of variability in drift rates induced by noise, which can 

drag the drift towards the wrong boundary and – given a low enough 

threshold – result in erring. Increasing α on the other hand increases the 

evidence needed to initiate a decision, resulting in slower response times, 

as well as higher accuracies. 

Does this tradeoff sound familiar? The alpha parameter models the 

Speed-Accuracy-Tradeoff (SAT) or caution in decision making. A cautious 

decision will be modeled as operating with a relatively higher alpha than 

a careless one, reflecting the position within the SAT in decision making. 

Cautious decisions operate with a higher α, careless ones under  

a lower α. 

Figure 7 depicts the same decision as figure 4 did: all parameters besides 

α were kept constant.  

Fig. 7. Schematic of a lower alpha parameter applied to a Drift Diffusion Model. 

The lowered bounds facilitate the creation of errors by shortening  the distance 

between the starting point and the decision threshold. 
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The reduced α value is visualized as lowered bounds – a smaller distance 

separating the starting point and its respective decision thresholds. In 

the early stage of both processes, noise substantially interferes with the 

deliberation process, dragging the integrator towards the wrong 

boundary. The system of figure 5 avoids erring, as its boundaries are high 

enough to continue sampling evidence and discriminate noise from actual 

information, eventually resulting in a correct response. 

Conversely, the system depicted in figure 7 operates carelessly with a 

lowered boundary separation. It needs less evidence to initiate a decision: 

The noise-driven swing satisfies the threshold – visualized via the red 

marker. 

It is important to note that the erroneous response was initiated 

substantially faster than the correct one. The decision onset is depicted 

as red markers set at the point where the drift reaches a boundary. This 

illustrates the Speed-Accuracy-Tradeoff in decision making in the drift-

diffusion model. As previously outlined, this expression of caution is a 

cognitive strategy in decision making and belongs to the parameters of 

cognitive control. 

Using this methodology of computational modeling, we can infer the 

expression caution across as well as within participants. The DDM 

outputs an estimate of the underlying parameters of the behavioral data. 

Therefore, we can not only 

compare RTs and accuracy 

rates, but also caution – drift 

rates of participants. 

Further, we can statistically 

test differences between 

parameters in both contexts. 

Fig. 8. Summary of DDM parameters. 
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Summary 

To this end, we designed a bipartite environment, wherein reward signals 

differ between contexts, albeit remaining stable within context. For an 

optimal performance, subjects ought to raise their expressed degree of 

caution in one context, and lower it in the other. Contexts altered trial-

by-trial, hence the window of picking up the difference in reward signals 

was extremely short for each exposure. Moreover, we test whether this 

divergence remains stable in the absence of reward signals. 

The associative learning perspective on cognitive control predicts that 

these reward signals can be picked up via unaware mechanisms also 

underlying associative learning: The applied cognitive strategy would 

gradually become associated with its respective context via reward 

signals, hence resulting in a contextually conditioned expression of 

control parameters. 

By observing that the divergence of caution remains stable in the absence 

of reward, we can conclude on evidence that cognitive control is indeed 

susceptible to the same basal mechanisms originally attributed only to 

associative learning. 

Our study aims to provide further clarity towards the question whether 

cognitive control can be subject to the principles of associative learning. 
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Method 

The present study ought to explore the extent to which conditioning of 

control parameters is possible within a volatile learning environment. 

To this end, two contexts were introduced within our environment, 

namely the top and bottom half of the screen (±2° vert. visual angle, 

figure 8). In each context, different reward policies were used to evaluate 

the subject’s performance. It is crucial to understand that identical task 

performance was evaluated differently in each context. 

Materials 

The experiment was performed on a computer monitor with a 

diameter of 17 inches, a resolution of 1920 x 1080 pixels, and a refresh 

rate of 60 hertz. Participants were positioned at a distance of 70 cm from 

the monitor. The experiment was designed in PsychoPy 

(Peirce 2007; 2009) and featured a visual discrimination decision making 

task. After an individual difficulty calibration, the task remained 

consistent throughout the experiment.  

The survey was conducted in a dimly lit cubicle. To account for precise 

recording of response times in the range of μsek, a Cedrus Response Pad 

RB-740 was used as the input device. Participants rested their fingertips 

comfortably on one response key. 

Participants 

53 participants (37 female, aged 18–34, M=22, SD=2.42) took part in 

the experiment. All participants had normal or corrected-to-normal 

visual acuity. All subjects were students at Ghent University. They 

signed informed consent prior and received one participation credit in 

return for their participation. One participant also received a coupon for 

the online marketplace bol.com with a value of EUR100,- for having 
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acquired the highest score in the experiment. This reward was 

communicated in the introductory part of the survey. 

Reward scheme 

Each decision was classified as a. 

correct or incorrect, b. fast or slow  

and c. which context it was taken in. It 

follows a 2x4 matrix of possible feedback 

conditions (Fig. 9).  

This resulted in correct & fast (CF), correct & slow (CS), wrong & fast 

(WF), and wrong & slow (WS) – brackets for each context. Both CF and 

WS were evaluated in the same way across contexts: +1 and -1, 

respectively. 

The manipulation is located within the inner columns. In the accuracy 

condition – the one supposed to increase caution – it was optimal to 

prioritize correct, though slow decisions as opposed to erroneous and fast 

ones. However, the speed condition, which ought to decrease caution, and 

shift toward a speed emphasis on the Speed-Accuracy-Tradeoff, had these 

values inverted. Within this context, it was optimal to sacrifice accuracy 

to gain in speed, as the penalty was given in the correct and slow bracket 

(CS). 

Given the same distribution of responses within an experiment, a more 

speed-focused strategy accumulated more bonus points in the speed-

condition and adopting a more cautious strategy amassed more bonus 

points in the accuracy condition. 

This delta in performance evaluation ought to nudge the subjects into 

adapting their SAT to optimize performance and maximize the gained 

bonus. The rationale behind this scheme was adopted from Fitts (1966).  

Fig. 9. The applied reward schemes. 
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Trial Design 

Now, to incorporate volatility, the presentation of these contexts 

fluctuated trial-by-trial. A context was consecutively presented three 

times at most. 

The task at hand was a perceptual discrimination task, wherein subjects 

had to classify stimuli into one of two categories. Subjects had to choose 

between two response options each trial, constituting a two alternative 

forced choice task paradigm (2afc). 

Namely, participants ought to decide which color is majorly represented 

within a cloud of dots as mentioned before. Within this environment, we 

ought to condition subjects to adopt a cautious strategy when the 

stimulus is presented in one context, and conversely a less cautious one 

in the opposing one by varying the reward contingencies between 

contexts. 

Stimuli 

Every trial started with the presentation of a fixation cross on a 

lightly gray background (PsychoPy rgb = [0.88, 0.91, 0.91]) for a fixed 

duration of 500ms. Its location varied between three levels (top, center, 

bottom) across the experiment and was informative of the location the 

following stimuli would appear in. After 500ms, the cross was replaced by 

the task stimuli, consisting of two-colored flankers and the target 

stimulus, which was to be classified. The target consists of 200 colored 

dots. Each dot is colored in either cyan (PsychoPy rgb = [0.11, 0.67, 0.56]) 

or orange (PsychoPy rgb = [1, 0.32, 0.22]).   

Fig. 10. Target stimulus with a coherence of 55% (blue). 
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The relative distribution of the colors represents the difficulty of the task 

and will be further referred to as stimuli coherence. Participants ought to 

visually analyze the stimuli and decide on the predominantly represented 

color. A low coherence, say 55%, entails a narrow delta between the 

amounts of dots and hence raises the difficulty to discriminate the 

dominant color. In this example, the dots are colored representing a 

110:90 ratio (Fig. 10). Vice versa, a high coherence, say 70% represents a 

low degree of difficulty to discriminate the dominant color. 

The target appears along two horizontally flanking stimuli (±6.5° visual 

angle respectively). These remained fixed on their respective horizontal 

position during the whole experiment, so the participant could habituate 

to their positions and focus on classifying the target. The participant 

ought to visually analyze the stimuli and decide on the dominant color of 

dots. 

One then presses the button, which stands for the majority-flanker. A 

time window of 5000ms was provided for each decision. Upon response, 

or after the deadline was reached, the feedback was presented in place of 

the target. Depending on the stage of the experiment, the feedback was 

either masked (‘###’), numeric (+1/ -1/ +0/ -0.5) or a string (‘correct’/ 

’incorrect’), as well as ‘te laat’ (Dutch  ‘too late’) appearing when the 

deadline was reached. 

Procedure and Block Design 

The present study ought to explore the possibilities of conditioning 

control parameters within a volatile environment. To this end, an 

Fig. 11. A target with a coherence of 70% (blue). 
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experiment consisting of three major epochs was engineered. These can 

be further grouped into two periods of interest (Fig. 12). 

Participants were randomly, though in equal numbers, assigned to one of 

four groups, counterbalancing a) the color arrangement of the flankers, 

and b) the assignment of reward policies to context-locations. 

Demonstration Block 

An introductory text followed informing the participants about the 

workings of the task, the temporal expense of the study as well as the 

possibility to have a self-timed break between blocks. 

To get to know the task procedure, subjects completed a short 

demonstration block of 8 trials with moderate difficulty (randomly 

sampled coherence values around 0.6). Feedback of correct/incorrect was 

displayed and the stimuli remained vertically centered. 

After the demo another instruction block followed stating that after the 

following block, the accumulation of points will commence, followed by an 

emphasis on a gift card worth EUR100,-. Furthermore, the competitive 

aspect was emphasized by stating that only the best player will earn that 

reward. Additionally, it was recommended to already take the following 

block seriously, as it may provide a competitive advantage. Subsequently, 

the procedure of the following blocks was explained. 

Throughout 10 blocks of 80 trials each one may accumulate a score with 

the goal being to give correct answers as quickly as possible to maximize 

one’s score. 

Fig. 12. Block-level design of the experimental procedure. 
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Training Block: Difficulty Calibration 

To ensure a comparable strain at decision making between all 

subjects, the task difficulty was individually calibrated. This was done 

using a staircase method (Wetherill & Levitt, 1965), specifically an 

adaptive fixed-step-size calibrated according to García-Pérez (1998). The 

rationale of this method is to let all participants go through a common 

task difficulty calibration in order to let them converge towards a cross-

participant comparable difficulty level. 

Within this block, performance was solely evaluated as correct or 

incorrect. All stimuli were presented in the vertically centered position 

throughout trials. A goal of 75% accuracy was set for all participants to 

converge on. The coherence of the target represented the task difficulty: 

a high coherence constitutes an easy difficulty and vice versa.  

Pre-Learning Phase 

After the difficulty calibration, 

participants completed two blocks of 

80 trials each with their individual 

difficulty level. This epoch introduces 

the trial-by-trial fluctuation of the 

contexts, as well as masked feedback 

display: ‘###’ (Fig. 13). No true reward 

was assigned, as the necessary values for evaluation were not yet 

calibrated. However, participants were told that they were being 

rewarded, albeit their reward being hidden. This setup is further referred 

to as masked feedback. Within these two blocks, an RT-threshold was 

calibrated, which delineated fast from slow responses. Therefore, all 

correct RTs were logged, sorted and the 60th percentile of this array was 

used as the discriminatory value, further referred to as response time 

criterion (RT criterion). This epoch is of high importance for the latter 

Fig. 13. Schematic of the task set up 

during pre-learning.  
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analyses, as it logged the subject’s performance before the onset of the 

learning process. 

Learning Phase 

The subsequent learning phase then implemented both calibrated 

values and fluctuating contexts: the difficulty as well as the rtc to 

evaluate each decision according to the rewards scheme. Within 6 blocks, 

participants completed 480 trials in total in both contexts, which ought 

to nudge the participant into adopting a different reward schedule in 

each.  

In accordance with the associative learning perspective on cognitive 

control, the delta in reward signals was supposed to be picked up by the 

control system informing caution within the decision. By registering 

reinforcement exerting caution in one context, the control system seeks 

to optimize its performance. Therefore, it adopts a cautious strategy – an 

accuracy emphasis – in one context. Conversely, it registers inverse 

reward signals in the opposing context, and adapts strategy accordingly 

toward a speed-emphasis. 

This drive to maximize bonus and consequently maximize the chance of 

winning EUR100,- was the incentive for the control system to find a way 

to optimize performance. 

It’s important to keep in mind that one aim of this study was to find out 

whether this difference in reward could be picked up by the subjects as 

well as the extent of their adaptation to it. These 480 trials constituted 

the window in which this was supposed to take place. Furthermore, these 

trials serve the purpose of forming associations between the cognitive 

strategy and the context it was exerted in. This network would iteratively 

strengthen, as it yields reward signals for using the right strategy – high 

or low caution, respectively. Conversely, the absence of reward signals 

e.g., using the ‘wrong’ contextual strategy would incentivize the system 

to find a way to optimize its bonus, therefore randomly adapting, until 
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picking up on the right strategy and from this point, converging toward 

the right end on the pole, towards the right strategy to implement.  

Post-Learning Phase 

Given the creation of a network associating the cognitive strategy 

with its respective context, the post learning phase ought to answer the 

question of stability after reward signals cease. 

The post learning epoch again consisted of two blocks à 80 trials with 

masked feedback display and fluctuating contexts. The difference to the 

pre-learning epoch is that subjects were still rewarded in the background. 

This was not possible in the early phase as the values for the reward 

policies had not been calibrated yet. This change happened in the back 

end only, subjects had the same experience in the third epoch as they did 

in the first. 

Awareness test 

Lastly, a questionnaire was implemented to check for subject 

awareness of the study design. This questionnaire consisted of an open-

question part, followed by a multiple-choice section. Former inquired 

whether a difference in reward schemes was noticed in the two contexts 

and if so, to briefly outline it. 

The latter showed three options to choose from: first was that some 

participants were rewarded at the top of the screen for being careful / 

giving mostly correct answers and were rewarded in the bottom half for 

being careless / giving especially quick answers. The second option stated 

exactly the opposite as statement 1 and indifference in reward schemes 

constituted the third option.  

Procedure Summary 

Regard again figure 12. The learning epoch, period of interest 2  

(POI-2, 6 x 80 trials) covers the development of control parameters within 

the learning phase. This period tracks a. if and b. how strategy 
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distributions develop upon onset of reward signals. (Orange highlight 

in Fig. 14). 

Period of interest 1 (POI-1, 2 blocks à 2 x 80 trials) compares the 

parameter distributions of epoch 1 and 3, to test a. if, and b. how strategy 

distributions have changed from their baseline. Figure 14 illustrates the 

two POIs. Here, 2 blocks were condensed into epochs (E) for readability. 

We hypothesize that each subject exhibits the same level of cautiousness 

for both contexts within epoch 1 – the baseline. 

Progressing through the learning phase, the subject’s expression of 

caution gradually starts to diverge between contexts, reaching its peak 

distance at the very end of epoch 2. In epoch 3, this difference in 

cautiousness ought to shrink due to absence of reward signals, but 

nonetheless remain observable.  

Data analysis 

Both periods of interest were separated and analyzed individually. Period 

of interest 1 enveloped the pre- and post-learning phase 

 (blocks 2,3,10 & 11). This period was characterized by masked feedback 

and compares the development of drift-diffusion model parameters 

before, and after the learning phase. 

Period of interest 2 captures the trajectory of parameter evolution 

throughout the learning phase 

(blocks 4-9). Within this period, 

reward feedback was displayed. 

This reward ought to condition the 

participants to adopt diverging 

expressions of caution via reward 

signals. Epoch concatenates two 

blocks and hence an epoch 

featuring 80 trials in each condition is created. This transformation was 

Fig. 14. Anticipated divergence in assumed 

caution across the experiment. Two blocks 

were collapsed into one estimation block (E) 

for the sake of readability. 
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crucial to have a block large enough for the subsequent parameter 

estimation. (Lerche, 2016). In this notation POI-1 envelops epochs 0 & 4, 

and POI-2 includes epochs 1, 2 & 3. 

Statistical analysis was conducted with the statsmodels 0.13.5 module 

and always featured α = 0.05. Visualizations were created using 

Matplotlib (Hunter, 2007), as well as the Seaborn library (Waskom, 2021) 

in Python 3.8.8. 

Data preparation  

RTs deviating from the mean by more than 3σ (absolute z-score ≥3; 

RT > 1.885) were identified as outliers. (see Berger, 2021 for discussion). 

No negative z-scores passed the threshold of z = -3. Furthermore, over 

half of the outliers occurred in the pre-learning phase (57%), suggesting 

that they are mainly due to learning effects within the new task. 

RTs of outliers as well as trials featuring null-RTs (n=6) were identified. 

An exclusion of these trials wasn’t feasible, as we needed 80 trials per 

block and participant for the upcoming analysis. In total, 795 RTs were 

corrected at individual level by adding 3σ to the mean of the respective 

block. This clipping was done for 1.8% of total observations. 

Demonstration and calibration block were omitted from the analysis. 

Period of Interest 1 

The nonparametric Wilcox signed rank test was employed to analyze 

RT-distributions within POI-1. This method was preferred to paired T-

tests because of the violation of the normality-assumption. Wilcox does 

not assume normality, but rather similarity of distribution shape across 

groups as well as the given attribute of sphericity. 

First, the between-context-variance of the pre- and post-learning epochs 

(E0, E4) was analyzed, followed by a between-context analysis of 

block 4 (B4) (last pre-learning block) and B10 (first post-learning block). 

This way we intended to capture the effect of the rewarded learning phase 

on post-learning blocks in relation to the pre-learning baseline. 
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In the beginning epoch (0), the distributions should not vary, as no 

learning was applied. Hence, epoch 1 was tested bidirectionally (two-

sided): H0: μE0
increase ≠ μE0

decrease,|and respectively:  

H1: μE0
increase = μE0

decrease 

For epoch 4, we hypothesized that the increase-condition will have 

distribution shifted to the right, characterized by slower values and 

conversely, the decrease-condition a higher density of faster values. 

Therefore, we applied a one-sided test: H0: μE4
increase ≤ μE4

decrease. 

And respectively: H1: μE4
increase > μE4

decrease. 

Additionally, a subject-level 2x2 rm-ANOVA (Girden, 1992) was applied 

to dissect the factors condition and the block on RT distribution between 

the two epochs. 

Period of Interest 2 

Dealing with correlated datapoints, a repeated measure 2x6 ANOVA 

was conducted on response times with condition (increase/decrease) and 

block as within-subject factors. Given a large enough n, ANOVAs are 

known to be robust against violations of normality (Lix, 1996). In this 

case, each of the 2x6 conditions consists of 2120 samples. 

Due to the absence of an effect, employing post-hoc tests to determine 

directionality was refrained from. 

Parameter Estimation with the Drift-Diffusion Model 

To estimate DDM parameters, we used hierarchical Bayesian 

estimation. This has the advantage of individual fits being bound by 

group-level distributions (Wiecki, 2013). Hierarchical DDM was chosen 

because the estimates of parameters are allowed to vary trial-by-trial, 

affording the capability to model fluctuations of neural or psychological 

variables within a process. This attribute makes the HDDM 

(HDDM 0.6.0, pyMC 2.3.6) package incredibly useful for the modeling of 

decision-making processes. The HDDM uses Markov-Chain-Monte-

Carlo-sampling (MCMC) for generating posterior distributions over 



44 

 

   

Chapter 2 

model parameters. The incorporated Bayesian statistics in the HDDM-

backend allows the quantification of not only the most likely parameter-

value, but also its distribution. Such an approach generates valuable 

knowledge about the associated uncertainty of a parameter-estimate 

through its variance. Due to the hierarchical nature of the HDDM-

architecture, estimates for individual subjects are constrained by group-

level prior distributions. Subsequently, individual parameter estimates 

lose statistical independence and inference is only meaningful at group-

level. In particular, the model was specified such that on each trial t, the 

bias remained fixed at alpha/2. Alpha (boundary separation), delta (drift 

rate) and theta (non-decision time) were set to be based on the categorical 

estimator coded to be dependent on condition. 

By convention, the expected outlier percentage was set to 5%. For the 

estimation, the original outliers were again introduced to the dataset, as 

the HDDM removes them by default. Besides, no manipulations were 

applied. 4000 samples were drawn from this model, discarding the first 

1000 samples as ‘burn-in’. Hypotheses in this case followed the same logic 

as the ones underlying the Wilcox paired rank test: The baseline epoch 0 

was hypothesized to have no variance across conditions and was tested 

bidirectionally. 

H0: μE0
increase ≠ μE0

decrease, and respectively: H1: μE0
increase = μE0

decrease 

RT distributions of epoch 4 were expected to have a higher mean in the 

increase group a.o.t. the decrease group.  

H0: μE4
increase ≤ μE4

decrease, and respectively H1: μE4
increase > μE4

decrease 

One problem of DDM fitting occurs when the respective chains do not 

converge to the same stationary distribution and the MCMC algorithm 

subsequently does not sample from the actual posterior. The R-hat 

statistic compares between-chain variance to within-chain variance to 

control for this issue. Throughout all chains (parameters of both POIs for 

each participant), R-hat values of ~1 (x̄ = 1.002) were observed. 
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Additionally, the Geweke statistic comparing means and variances of 

sequences from both head and tails of chains returned True, further 

indicating successful convergence. 

SAT-Graphs  

Recall figure 1 from chapter 1, depicting the SAT of Bert the 

neanderthal illustrating the proportion of edible goods in his basket in 

relation to the time spent – a so called SAT-graph. 

On SAT-graphs, time is coded on x, 

whereas y codes the proportional 

correctness or accuracy. Black 

annotations depict data points, which 

were taken in temporal steps. It is 

important to understand that the graph 

does not provide information about these 

step sizes, as it depreciates them to 

ordinality. 

The green sample was followed by the blue sample, as denoted by the blue 

arrow. We know that between these samples a shift towards a more 

accurate behavior occurred. The same behavior applies to the next 

samples, resulting in the starred sample which has the highest 

expression of caution – taking a lot of time and yielding high accuracies. 

This introductory figure is smoothed to an increasing function for clarity, 

but SAT-graphs in real world data are seldom so docile. They often change 

direction and cross each other; hence it is important to keep in mind to 

follow the order of the connections (depicted with arrows).

Fig. 15. Generic SAT-Plot coding 

accuracy on the y-axis and time on 

the x-axis. 
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Results 

Participant exclusion 

No participants were excluded from the analysis, leaving the sample size 

at 53 subjects. Although detecting four significant outliers for calibrated 

coherence and response time criterions, no participants overlapped. 

Furthermore, no noteworthy deviations in mean RT or accuracy rates across 

participants were observed. Additionally, RT-distributions of each participant 

were inspected, which all showed the expected right-skewed shapes that 

response times characteristically follow. These findings suggest that all 

participants took the experiment seriously and performed accordingly. 

Descriptive Analysis 

The relation of both coherence (task difficulty) and response time criterion 

(slow-fast-threshold) in the participants’ total score was first analyzed. 

As expected, there was a significant positive correlation between RT criterion 

and total score (r=0.53***). This is sound, as a high criterion raises the 

chances of reaching the +1 reward, which is independent of the currently 

active scheme. 

However – and interestingly, there was a non-significant negative correlation 

between the coherence and total score (r = -0.18). Upon exclusion of subjects 

with outlier criterions (r > 1.56sec, n=4), this correlation turned out to be 

driven by same and corrected to a marginal r = 0.03. This fortifies the notion 



47 

 

 

Chapter 5 

that the coherence calibration worked 

as intended and successfully normed 

the task to individual skill-level. 

Importantly, the winner was no 

outlier in either value.  

Fig. 16 shows a 3D-scatterplot 

illustrating the relation of both 

coherence and response time criterion 

to the total score. The red circle 

highlights the winner (RT criterion = 

1.19 sec, coherence = 56%,  

score = 523). 

On average, the response time 

criterion was calibrated at 960ms 

(std=230ms), and coherence at 56% 

(std = 0.2%).  

From visual inspection, RT-

distributions did not seem to vary 

across groups and only marginally 

across blocks, (Fig. 17). Importantly, 

no divergence in response behavior is 

observable across conditions. When 

the RTs shifted, they did so equally in 

both conditions. 

Awareness Test 

Subjects were randomly, although in equal numbers, assigned to a context 

mapping, which assigned reward policies contexts. Mapping 1 (N=26) 

indicates that the increase reward scheme was attributed to the upper 

location. Vice versa, mapping 2 (N=27) indicates the bottom location being 

rewarded by the increase scheme. 

Fig. 17. Boxplots depicting RT distributions 

across the experiment for both conditions. 

Fig. 16. 3D Scatterplot depicting the relation  

of RT criterion, coherence and the attained 

score. 
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At the end of the experiment subjects were asked 

whether they noticed any pattern in the reward 

contingencies, followed by a multiple-choice 

questionnaire consisting of three choices. 

Subjects’ responses are depicted in Fig. 18. 

Correct answers are highlighted in green.  

Across both mappings, the same pattern was 

observed. Namely, both statement 1 and 3 were 

preferred a.o.t. statement 2. Exhibiting the same 

tendency across mappings suggests that the 

mapping-counterbalancing did not influence the statement-choice or 

awareness of subjects. Furthermore, this indicates that subjects giving a 

correct answer were not aware of the nature of the rewards schemes, but 

supposedly subject to sequence effects of the questionnaire.  

Period of Interest 1 

POI-1: Inferential Statistics 

In general, RTs were characterized by 

significant divergence from normality. 

Moreover log, square root or cubic-root 

transformations did not achieve normality 

according to Shapiro-Wilk. (Mishra et. al., 

2019). QQ-Plots further exemplify this by 

visually displaying deviance from the normal 

distribution. The closest approximation to 

normality was achieved by log 

transformations, albeit remaining 

significantly deviant from it. 

A violation of the assumption of sphericity 

makes the ANOVA, as well as Wilcox test 

highly susceptible to type II error, hence 

Fig. 19. QQ-Plots for increase (upper) 

and decrease (lower) condition. Both 

suggest the violation of normality. 

Fig. 18. Results of the awareness 

test for each condition mapping 

across subjects. Green highlight 

indicates the subjects’ mapping. 
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Mauchly's Test of Sphericity was applied to test the data. Results suggest that 

the assumption of sphericity is not violated, as chi2 = 3.67, W = 0.93  and p = 

0.599. 

The comparison of conditions within epoch 0 (pre-learning) via the Wilcox 

signed rank test shows the expected non-significance  

(z = 4368133, p = 0.48). 

It was hypothesized for epoch 4 to be characterized by a right-shifted 

distribution in RTs resulting in a higher mean. This hypothesis was falsified, 

as z = 4554729.0 and p = 0.18. 

The 2x2 rm-ANOVA likewise resulted 

in no significance regarding the factor 

condition. Factor estimation block 

(estim) turned out to be highly 

significant (***), but this was 

expected, as it models between-epoch effects. Our interest lay in the within-

block factor condition, which remained absent. 

POI-1: SAT-Plot 

Figure 21 visualizes the 

behavior of each POI-1 block 

and condition within SAT-

space. This figure was scaled 

for the sake of readability.  

Blocks of the pre-learning 

phase are situated on the right, 

and post learning on the left 

side. 

 Importantly, six learning 

blocks separate points 3 and 10, 

so the connecting line must be interpreted with caution. Rather, it depicts the 

Fig. 20. rmANOVA for Period of Interest 1. 

Fig. 21. SAT-Plot for blocks pre- (2,3) and post- (10,11) 

learning phase. 
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vector with which both epochs traveled across SAT space, modulated by the 

learning phase. 

Across the POI, a speedup of 195ms occurred, while generally losing accuracy. 

The decrease group lost more than the increase group, albeit this difference is 

marginal (delta= 0.9%). Increase group’s initial increase in accuracy (+1.7%) 

is not interpretable, as it occurred before learning commenced. This graph 

ought to visualize the shift within the SAT space induced by the learning 

block. We anticipated a divergence between groups to be perceived with the 

increase condition moving to a locus of higher accuracy and slower RTs, and 

the decrease condition sacrificing accuracy to gain speed, moving to a locus in 

the lower left. 

While it holds true that the increase group generally exhibits a higher 

accuracy, both conditions begin in a similar area (as anticipated), but also end 

up in the same general space, only separated by 1% in accuracy with identical 

pace. No divergence occurred. This again illustrates that the learning phase 

failed to diverge conditions within SAT space. 

POI-1: DDM Parameter Estimation 

Posterior distributions as output by the 

DDM tell the same story: No divergence in 

boundary separation occurred. In both 

conditions, subjects shifted to a less cautious 

strategy throughout the experiment. The 

Bayesian nature of this model allows for 

statistical analysis, testing whether the 

distributions behaved as hypothesized. As 

stated in the analysis section, we 

hypothesized that alpha values increase in 

the accuracy condition, whereas decrease in 

the speed condition. Latter hypothesis was 

accepted (***) – however, the same behavior 

Fig. 22. Estimated alpha posterior 

densisites prior (E0), and post (E4) 

learning phase for increase (upper) 

and deacrease (lower) condition. 
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occurred in the accuracy condition, which ought to increase alpha values. 

Hence, the former hypothesis is rejected (p=0.99). Likewise, the interaction 

between block and condition was also insignificant (p=0.54). 

Period of Interest 2  

POI-2: Inferential Statistics 

Again, Mauchly's Test of 

Sphericity was applied to the data, 

resulting in the upkeep of the 

assumption of sphericity  

(chi2 = -370,W = 1626, p =1). 

Statistical analysis within the 

learning phase was conducted via repeated measure ANOVA modeling 

condition and block as within-subject factors. Factor block, (=progress 

throughout the experiment) turned out significant (***) in explaining variance 

of the response times. However, this is most likely due to effects unrelated to 

the nature of the study. We ought to test for the influence of the factor 

condition, which remains vastly insignificant. 

POI-2: SAT-Plot  

Within the learning phase, the 

subjects generally gain 133ms in 

speed, while sacrificing 2% in 

accuracy. The same moving pattern 

is mirrored across conditions. The 

averaged transition from b4 to b5 

(86ms) is most pronounced, 

accounting for 65% of total shift in 

response time, while sacrificing 

merely 0.8% of accuracy. This 

acceleration of RTs while keeping the same accuracy is most likely due to 

learning effects, which drive a more efficient performance. Progressing to b6, 

Fig. 23. rmANOVA results  for learning blocks  

4-9 of Period of Interest 2. 

Fig. 24. SAT-Plot of learning blocks 4-9 for 

both conditions. 
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both conditions keep the same pace while losing accuracy, followed by a 

divergence in b7, although in the ‘wrong’ direction: The decrease group shoots 

up in accuracy (+1.4%), while the increase group performs identically to the 

previous block, resulting in a delta of 2%. Subsequently, the increase group 

performs the largest jump in accuracy from b7 to b8 (+2.4%), while becoming 

marginally faster (-10ms). Finally, both groups converge to a similar position 

for b9. 

In general, both conditions exhibited the same pattern within the learning 

phase, becoming less cautious while gaining speed in the process. The 

aforementioned divergence cancels out by plotting POI-2 as epochs instead of 

blocks (Fig. 24). Notably, the movement within SAT space only occurs to the 

left: The learning phase is characterized only by acceleration, no slowing 

occurred between blocks.  

POI-2 Feedback Distributions. 

Feedback has only been given from block 4 on, wherein the necessary 

values for the reward scheme were calibrated. Hence, only POI-2 is subject to 

this analysis, as the post-learning block lacks its reference.  

Figure 25 depicts histograms of feedback distributions across, and within-

blocks. Both +1 and -1 feedback categories were excluded, as they were 

Fig. 25. Feedback distribution for POI-2 considering only the 

ambivalent classifications. The labels p.q are to be read as: the first 

integer (p) representing the block index, whereas the second one 

coding the condition (0 ~ increase; 1 ~ decrease). 
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assigned identically across conditions. It was expected to observe an increase 

of trials classified as wrong & fast (WF) in the decrease scheme and an 

increase of correct & slow (CS) trials in the increase scheme. For the decrease 

scheme, the blue WF category is advantageous. Conversely, trials evaluated 

by the increase scheme benefitted from the orange CS feedback. 

Two neighboring bars represent a block, indicated by the first number of the 

index (1.x). The second number following the dot represents the  

condition: x.0 reads as increase (accuracy) trials, whereas x.1 reads as 

decrease (speed) trials. This way, an inter- as well as intra-block comparison 

of feedback distributions was possible.  

It was hypothesized to observe a divergence in these values as the system 

progressively begins to adapt. The increase condition of block 6 was expected 

to consist of a respectively larger proportion of SC, a.o.t. the decrease 

condition, which ought to consist of more WF trials in respect to SC. Again, no 

such effect can be observed. 

The only noteworthy change in feedback is from block 4 to block 5, reducing 

the percentage of SC trials across conditions, keeping WF constant. Notably, 

only marginal changes within blocks can be observed. This again fortifies the 

notion that adaptation did not occur. Ratios remained the same across the 

learning phase instead of diverging within blocks. 
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POI-2 DDM Parameter Estimation  

Like POI-1, a similar pattern of 

parameter shifts across conditions can be 

observed. From e1 to e2, participants 

reduced their level of caution, which 

remained at the same level for e3. 

Considering the unambiguous absence of an 

effect, statistical analysis via rm‐ANOVA 

was refrained from. 

 

 

 

 

 

 

Relation of SAT Graphs to Alpha Densities 

I’d like to dedicate the last section of this chapter to the elegant relation of 

Speed-Accuracy-Tradeoff graphs and DDM posterior estimates. Figure 27 

depicts the POI-2 epochs (6 blocks condensed into 3 epochs), starting from e1 

(first learning epoch) to e3 (last learning epoch).  

This has the same connotation as in the posterior density plots of figure 26. 

Viewing both side by side illustrates the relation of SAT graph and alpha 

density: An epochs position within the SAT space defined by two coordinates 

(accuracy & response time) directly translates to the posterior density of 

alpha. Alpha posterior density seems to combine the information given out of 

average RT & accuracy into one metric. Importantly, as mentioned in the DDM 

section, HDDM parameter estimates are only meaningful in group level 

Fig. 26. Estimated alpha posterior 

densisites throughout the learning 

phase for increase (upper) and 

decrease (lower) condition. 
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comparison. Likewise, it would be impossible to approximate the alpha density 

of a single point on SAT space without reference samples. 

The distance traveled within SAT space between e1 and e2 is larger in respect 

to the distance separating e2 and e3, which suggests that a larger shift in 

caution occurred moving from e1 to e2 compared to the shift from e2 to e3. This 

is the pattern across groups. Figure 27 depicts precisely the same pattern of 

shifting caution: The posterior density shifts stronger from e1 to e2, a.o.t. 

shifting from e2 to e3. The distance crossed mirrors the shift of alpha 

distributions. Alpha is a unidimensional metric, conveying the information of 

two-dimensional positioning on the SAT graph. 

Now, regarding the movement between conditions, one can observe that 

within the increase condition, a relatively larger shift occurs from e2 to e3 

(+1.5% accuracy & -17ms), than within the decrease condition (-0.43% 

accuracy & -23ms). From e2 to e3, a larger distance is covered in the increase 

condition, a.o.t the decrease condition. Now, regarding the alpha densities for 

e2 & e3 for both groups, one detects this very same pattern: Alpha density of 

e2 and e3 in the increase group deviate more than in the decrease condition. 

Fig. 27. SAT Graph of POI-2 estimation blocks (e) of the learning phase for 

both conditions. For readability, blocks 4 & 6, 7 & 8 and 9 & 10 were collapsed 

into e1, e2 & e3, respectively. Color encodes the condition. 
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Summary 

Figure 28 visualizes the movement of epochs and conditions across the whole 

experiment. 

Throughout, the same pattern is mirrored across conditions. Epochs 0, 1, 2 & 

3 continually accelerated in response time (-277ms), while sacrificing accuracy 

(-4.2%) in the process. This trend was reversed in the transition from e3 to e4, 

returning to almost baseline accuracy (+3.7%) while slowing 83ms in relation 

to e3. Notably, e4 converges to almost baseline (e0) accuracy (delta = 0.6%) 

while responding almost 194ms quicker. The transition to masked feedback 

seems to drive up RTs which entail higher accuracy rates, generally shifting 

towards more cautious behavior. This suggests that the masking of feedback 

– or the absence of a numerical one – reduces urgency to respond and drives 

decisions to higher caution via the slowing of response times. Although this 

study was not designed to test this notion, this finding might point to an 

interesting avenue to explore further. Importantly, epochs exhibited the same 

movement across conditions. 

To conclude, conditions did not diverge in caution and all findings 

unequivocally point to the absence of an effect. 

Fig. 28. Graph depicting all estimation blocks (e) across both conditions within SAT 

space. Color codes the condition. Both conditions trace the same general pattern.  

Little variance across conditions can be observed. 
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Chapter 4: 

Limitations 

Limitations of our study can be clustered into issues regarding the frontend, 

namely the reward policies and the presentation of reward to the subject and 

the calibration of the response time criterion in the backend. 

Form of reward 

Notably, participants in the present study were not subject to reward 

signals per se, but rather to a proxy of it. Amassed score raised the chance of 

winning a gift card but the score/ or feedback itself was not informative to the 

participant on their chances of winning. Neither trial-by-trial, nor at the end 

of the experiment, where the score was displayed. The score only becomes 

meaningful for the analyst comparing all participants – outside the scope of 

each singular participant. This way, the subject itself did not have insight in 

the determinant metric of his performance, and his feedback becomes a distant 

proxy of the anticipated chance of payoff, rather than actual reward. 

Presumably, this rather indirect relation between displayed value and its 

meaning might have been too vague for the reinforcement system to interpret 

as reward. This argument refers to block 1 of the discussion, covering the 

problem of salience. In future approaches, one could transform the reward 

presentation into absolute units where the displayed value directly translates 

into financial gain or loss: the feedback ‘+1’ would actually gain the 

participants a penny, and a -1 would take one away. 

This way one could provide more tangible reward feedback, which could 

arguably create a more salient signal to be picked up by the reinforcement 

system. 

In conclusion, the modus of reward presentation might have been a 

substantial factor driving the observed null effect. As we ought to manipulate 
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the archaic system of reinforcement learning, the implemented reward signals 

might have been too vague to be picked up by reinforcement mechanisms. 

Reward Scheme 

As will be discussed in section General Discussion, the reward scheme 

constituted the very core of our experiment design. Participants ought to be 

manipulated into adopting different expressions of caution by being exposed 

to two contexts, each associated with an individual reward policy. The results 

of our simulated incentive maps suggest that these did not provide sufficient 

incentive for the system to adapt diverging strategies between contexts. A 

model outlining hypothesized reasons can be found in chapter 5. The proposed 

framework of incentive maps provided important insights into the workings of 

various reward policies and helped us sharpen our understanding of our study 

design. Further, it points out promising directions to take in creating a reward 

scheme which satisfies the balance between salience and unaware processing. 

Awareness Test Bias 

As outlined in section General Discussion, awareness check responses 

might have been subject to recency or primacy effects, nudging participant to 

choose the first or last option. To ensure that the reward scheme really 

remained undetected, this effect needs to be controlled for: future studies 

ought to cycle the statement options, i.e., via balanced Latin squares 

(Lewis, 1989). 

Response time Criterion 

Lastly, I’ll address the implementation of the response time criterion. This 

metric was calibrated in blocks 2 & 3 of the experiment  

(chapter 2: Pre-Learning) and was used to determine whether a response was 

classified as slow or fast via our reward scheme. We hypothesized that | 

fatigue and learning effects would cancel out while progressing  

through the experiment, but this turned out to be highly variable  

between participants. As outlined in chapter 3, we observe a rather large 

variance between participants in their RT criterion (std = 225ms by x̄ = 960ms) 
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a.o.t. the coherence metric (std = 2%, x̄ = 56%). This circumstance becomes 

visible when plotting the percentage of trials per block which have passed the 

threshold (= were classified as slow). Neither the mean, nor standard deviation 

varied significantly across conditions and were hence aggregated in figure 29 

for the sake of readability. 

The graph depicted in figure 29 generally follows the same inverse quadratic 

pattern as the response time plots do (Fig. 17): declining during learning and 

rising in the post-learning phase. 

The calibration pipeline shall be re-engineered 

to drive the variance induced by block factor 

beneath the variance induced by subject factors. 

Moreover, the RT criterion ought to control the 

effects occurring in transitions from feedback to 

masked feedback. Ultimately, this eradication 

would lead to between-condition effects 

becoming more salient. To this end, one could 

implement a dynamic threshold (sliding 

window), which is informed by the average RT 

of the last k response times and weighted by the 

participants accuracy. This could account for 

training, as well as fatigue effects on an 

individual level, as the threshold adapts to the 

subject’s performance and presumably ensuring 

the comparability of response time criterion 

passings across subjects.  

Fig. 29. Averaged proportion 

of trials reaching the RT 

criterion across blocks  

(subject average). 
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Chapter 5: 

General Discussion 

 The following section explores possible explanations for the observed absence 

of an effect. Three hierarchical steps will be discussed, which are hypothesized 

to be necessary for an adaptation to occur. 

The present study ought to investigate 

whether humans are capable of picking 

up a subtle difference in reward policies 

unwittingly while alternating between 

two contexts. The contexts incentivized 

cautious and reckless decision making, 

respectively via differing reward 

policies. Crucially, these contexts 

fluctuated trial-by-trial, keeping the 

temporal window of exposure to each 

policy very narrow. Building upon this notion of reward difference detection, 

the study ought to explore whether humans are able to adapt cognitive 

strategies ‘on the fly’ – informed merely by the presented context. Ultimately, 

the study ought to test whether such divergence in cautiousness a. occurs and 

b. remains stable in the absence of reward signals. 

The task design was centered around three attributes of associative learning: 

reward-sensitivity, contextual dependence, and unawareness. These were 

implemented by a bonus system, exposure to two contexts and a fast-paced 

task, respectively. 

I identified three mechanisms with hierarchical dependence, which 

presumably constitute the prerequisites for adaptation to occur. From now on 

the subject of the investigation will be referred to as "system". The term 

represents the reinforcement mechanisms exerting influence over the control 

system informing the subjects’ behavior and therefore performance. 

Fig. 30 Proposed hierarchy of 

prerequisites needed to be met for an 

adaptation to occur. 
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To achieve the desired outcome of embedding control parameters into a context 

(V), the system had to be conditioned to adapt different strategies for either of 

the contexts (IV). This adaptation requires two processes to take place: 

In order to adapt, the possibility of reward optimization by a modification of 

strategies must be detected/realized (III). Such detection is made substantially 

more difficult if the system starts in a ‘hybrid’ parameter configuration amidst 

the two poles of the SAT, not receiving the benefit of neither a purely cautious, 

nor incautious strategy. 

Building upon this detection, the swing in control parameters must be 

sufficiently incentivized (II). The subjective cost of adaptation must be 

outweighed by the respective anticipated reward – in our case the chance of 

winning a gift card, as well as its value. 

Lastly and fundamentally, the divergent reward policies must be salient 

enough to be picked up by reinforcement mechanisms (I), albeit still being kept 

subtle enough to remain in the absence of awareness. 

Only if prerequisites I, II & III (blue outlines in Fig. 30) are fulfilled the reward 

sensitivity of the system activates and sets the foundation for contextual 

adaptation to occur. Crucially, we have no insight into the fulfillment of each. 

The desired outcome would only become observable by adaptation, which 

needs all requirements to be satisfied. This circumstance is made even more 

complex by the unwitting nature of this adaptation process. We cannot ask the 

participants what would incentivize them to adapt, as it is no aware process 

per definition. In order to disentangle the problem of adaptation in such a 

fluctuating environment, each requirement must be explored individually. 

Ultimately, the challenge is to investigate, as well as to initiate a mechanism 

you only get feedback on if it works. Beneath that threshold of adaptation, our 

most powerful tools are informed guesses, or tinkering, as one could say. 
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Notion 1 – no detection of differing reward contingencies. 

Adaptation can only occur when the system recognizes an advantage in 

pursuing it. Foundational to such incentive is the detection of differing reward 

signals between contexts. 

The major problem at this stage is to engineer a reward scheme salient enough 

to be picked up by reinforcement mechanisms, while remaining subtle enough 

to stay ‘under the radar’ of conscious processing. 

Our data suggests that the latter requirement was met, as subjects did not 

display awareness of the reward policies according to a self report. 

Participants across mappings displayed the same pattern in awareness-

statements: The upper context seemed to have been associated intuitively with 

a more cautious approach in both mappings, regardless of the actual mapping. 

These results suggest that the manipulation remained in the absence of 

awareness. However, it remains unclear whether the difference in reward 

policies was salient enough to be picked up. 

Notion 2 – No opportunity for optimization detected. 

Moving upstream, the next hurdle is to showcase room for reward 

optimization. A system can start the experiment with an alpha-configuration, 

which can be described as hybrid or a central position amidst both poles. No 

incentive of adapting strategies manifests, as no advantageous strategy is 

promoted. Consequently, the system does not detect room for optimization, 

resulting in the continuance of the incumbent hybrid strategy. In order to 

engage optimization, the system has to detect a disadvantage in its current 

environment and the possibility to optimize it. 

Let’s assume that a system commences the experiment with an instruction-

informed high degree of caution. In the increase context, it behaves optimally 

and gradually it’ll detect a disadvantage of its current strategy when deciding 

in the opposing context. This would trigger an exploration of possible 
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strategies in the suboptimal context resulting in the gradual convergence to 

decreased caution in same. 

Essentially, the system must detect a disadvantage to explore for 

optimization. Once optimized by diverging the expressions of caution, the 

system would shift into exploiting this configuration. Consequently, this would 

lead to contextual parameter embedding mediated by reoccurring reward 

signals. In this vein, this subset of the adaptation problem verges into the 

realm of the Exploration-Exploitation-Tradeoff.  

Figure 31 shows a heatmap capturing performance differences of simulated 

trials evaluated by both policies. (This is outlined in detail in chapter 6). In 

this context, the term ‘performance’ is used as the amassed bonus across many 

trials, not the speed or accuracy of the decisions taken (i.e., within decision set 

performance). 

The x and y axis code boundary separation and drift rate, respectively. Each 

unit of the heatmap contains the normalized reward difference of the same 

decision, evaluated by opposing schemes. 

Fig. 31 Incentive map reflecting the experimentally applied  reward 

policies. Red color reads as the parameter set being more profitable 

for the increase scheme and vice versa for blue color. The white 

rectangle frames the parameter space participants operated in. 
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As these simulated decisions also account for noise, trials characterized by 

differing RTs as well as accuracy rates are created. 

A negative value of this difference is coded as blue, which interprets as the 

decrease-scheme turning out dominant in that particular set of parameters. 

Vice versa, a red coding (a positive value) reads as the increase scheme being 

more advantageous. White and close to white tiles depict areas of indifference: 

no reward scheme turned out to be dominant; or put differently, one 

configuration of parameters led to comparable bonus outcomes in both 

schemes. 

In this way, a metric was created to compare which policy is more 

advantageous to a system when taking a decision informed by a particular set 

of parameters. Importantly, the evaluation parameters (policies) used in this 

simulation are identical to the ones used in the main body of the experiment. 

The RT criterion of 0.94 constitutes the average value of our subjects. 

The upper section of figure 31 covers an area characterized by high values of 

boundary separation/caution, which is rewarded by the increase scheme. This 

results in a stronger red coloring, as the system accumulates more points by 

being evaluated according to the increase scheme as opposed to the decrease 

scheme. A delta in performance of up to 40% emerges. The increase scheme 

ought to reward highly cautious decision making and the upper area captures 

decisions informed by this very parameter expression of high alpha. 

Conversely, the lower part of the map displays the area of operating under a 

low degree of caution, resulting in the decrease scheme being more rewarding: 

A low degree of boundary separation amasses more points and hence 

dominates the performance-delta by up to 30%. However, these values are 

unattainable by participants. 

Notably, the white rectangle depicts the area which our subjects operated in. 

This observed space is mainly populated by white tiles, depicting indifference 

between schemes. Furthermore, the main body of participants started off with 

an alpha of 1.6 and shifted further down to 1.3 across the experiment. This 
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ribbon of alpha values is characterized by a performance difference ranging 

between one and 15%. 

Incentive maps suggest that building block 2 of the pipeline was not satisfied. 

In our configuration, the reinforcement system would have had to pick up a 

marginal incentive, which I deem unlikely to have occurred. Building upon 

these results, we conclude on the notion that too little incentive was given to 

have initiated an exploration, which renders the subsequent adaptation of 

SAT parameters unattainable. The used reward policies provided marginal 

incentive to initiate a reinforcement-driven adaptation of cautiousness. 

The introduced simulation approach constitutes a powerful tool for exploring 

possible reward schemes, as well as their utility when governed by different 

RT criterions. Furthermore, it enables us to extend our investigation beyond 

the bounds of observed expressions of parameter configurations. This notion 

as well as the modeling of various reward schemes will be continued in  

chapter 6. In this case, the simulations provided rich insights into our 

experimental design by showing too small a difference in reward signals 

between our policies. This suggests that subjects likely did not pick up a 

difference in schemes and subsequently did not detect the possibility of 

optimizing their performance. 

Notion 3 – Adaptation Cost outweighs Payoff. 

Even if I and II were satisfied, a third prerequisite building block needs to 

be catered for, which is subject to the notion of inherent costliness of cognitive 

control and its component of flexible adaptation in particular. We theorize that 

mainly two costs are to be considered: firstly, the cost of resources expensed in 

the shift and secondly, the temporal cost of shifting parameter configuration. 

The former one consists of economic consideration regarding the subjective 

cost of adaptation: the exultance of mental effort is weighed against the 

subjectively perceived likelihood and quality of the anticipated payoff. 
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Payoff in this case depends on a. the likelihood of winning and b. the sum of 

money anticipated to be won. Both factors combined constitute the provided 

incentive, which is faced by the costliness of adaptation. 

The second factor of costliness – opportunity cost of time – is characterized by 

the surplus in RT, which is needed to shift parameter settings. This surplus 

would mount onto the response time additively. These additional milliseconds 

can be determinant for the categorization into slow or fast. To further 

investigate this notion, computational models of statistical optimization 

within decision making can be applied, as reviewed by Bogasz (2007). 

Again, regarding our reward policies, such crossing of the RT criterion is 

detrimental in the decrease scheme (possible feedback [-.5, -1],  

speed condition), whereas less so in the increase scheme (possible feedback  

[0, +1], accuracy condition). Paradoxically, the decrease context would likely 

penalize an adaptation because of the temporal cost the switch in strategy 

would entail. 

In summary, the time-, as well as effort-related cost of rapid adaptation must 

be compensated by the perceived payoff. Only then will the system initiate the 

effortful adaptation process. 

This third stage constitutes the last building block of our model characterizing 

the underpinnings of rapid control adaptation. I hypothesize, as mentioned, 

that all three must be satisfied for the reinforcement system to pick up the 

exploration process towards optimization. 

Conclusion 

Despite inconclusive results this study provided valuable insights for a 

further approach of the research question. The applied experimental design 

did not initiate a context dependent divergence in caution. However, we 

attribute this absence to a malfunctioning experimental design, rather than 

to the impossibility of achieving said divergence. 

Interestingly, an effect of masked feedback was observed, which seemed to 

have enlarged both RTs and accuracy rates. Likewise, a shift to the top-right 
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(accuracy-domain) within the SAT-space was observed when transitioning 

from the last feedback block to masked feedback phase. This might open an 

interesting alley for future research investigating the role of an active reward 

display vs. a masked one while instructing equal evaluation in the backend. 

The main contribution of this study is an array of valuable insights for the 

design of studies targeting this archaic reinforcement mechanism and its 

activation for regulating control parameters. With information sampled along 

every step of this journey I ideated a model aiming to explain the observed 

null-effect by decomposing the problem into hierarchically structured building 

blocks. Doing so allows for the individual investigation of each block, which 

will lead to the engineering of the optimal study design. Notably, this operates 

under the assumption that trial-by-trial control conditioning is possible. This 

approach of optimizing the study design is only one avenue to take for future 

research. 

However, one ought to keep in mind that this whole problem might not be 

solvable. Potentially, cognitive control cannot be conditioned with such short 

windows of exposure to reward signals. Following this more pessimistic notion, 

another avenue opens up for approaching upcoming research, namely 

manipulating the windows of exposure to reward signals. Studies using 

blocked designs have managed to achieve the anticipated conditioning of 

control. Subsequently, it would be interesting to explore that space between 

block-, and trial-wise shift of reward policy. A mini-block of say 10–20 trials 

for each policy could be implemented to explore at what block size threshold 

the possibility of conditioning ceases. This second avenue would take a 

functioning blocked experimental design and iteratively lower the block size 

until no conditioning can be observed. 

These avenues are by no means mutually exclusive but constitute two 

approaches needed to be taken to sharpen the understanding of the adaptation 

problem within volatile environments. 
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It is established that a block-wise adaptation occurs, which begs the question 

of where the threshold lies. The present study communicates that a trial-by-

trial adaptation did not occur. If after thorough experimental re-engineering 

this absence of adaptation remains, one can assume that it indeed is not 

possible. 

Now, I pose that these findings represent two poles on a spectrum of reward 

exposure. The present study using window sizes of ≤ 3 represents one pole. 

Opposing are studies using blocked design (nt~40, i.e., Braem, 2017) which 

achieved control conditioning. The space between 3 and 40 trials of reward 

exposure constitutes the spectrum. Now, how far can one decrease window size 

while still observing an effect? It would be interesting to see where that line is 

drawn.  

Further I believe that this point does not constitute the end of the journey but 

rather a beginning from which one can embark on the exploration of the 

underpinnings of control conditioning. Regarding the complexity of the 

cognitive system, it will most likely not be as simple as decreasing block size 

of the same experimental design up until the point of no adaptation and 

concluding to have found the answer. Furthermore, it would be even more 

interesting to explore which modifications to study design could drive this 

threshold even lower. Presumably, more refined measures need to be taken 

from that point on to further decrease block size while keeping the adaptation 

in the absence of awareness. Subsequently, the outlined building blocks will 

once again become relevant, as each needs to be optimized for the respective 

task design. I hypothesize the role of incentive to gain more weight the lower 

the block size becomes.  

In the upcoming section, a computational framework will be introduced which 

targets the incentive provided for switching control configurations via 

opposing reward policies.
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 Incentive Mapping 

 We recognized that the incentive to shift along the SAT axis is hard to 

capture. A substantial factor to this problem is the fact that we are trying to 

influence an unaware mechanism. This problem essentially translates to 

investigating the role of incentive in reward sensitivity within associative 

learning. Applying this to our case, I theorized that this problem can be 

decomposed into I. creating detectability, II. displaying the possibility of 

optimization and III. providing the incentive to adapt accordingly. 

To provide insights into this cluster, a 

framework was engineered, which formalizes 

‘provided incentive’ as the performance 

difference resulting from comparable 

decisions being evaluated by opposing 

schemes (Fig. 32). 

If decisions informed by a given set of parameters result in more bonus in 

scheme 1 as opposed to scheme 2, this parameter set is reinforced by the 

former. However, an advantage in one scheme constitutes an equal 

disadvantage in the opposing one. We argue that such difference in 

performance relates positively with the provided incentive to switch between 

parameter constellations.  

Method 

This approach utilizes the simulation library of the HDDM module 

(Wiecki, 2013; Python 2.7), which allows us to simulate decisions informed by 

arbitrary parameters. Namely, a set of n samples of decisions taken under a 

fixed set of parameters is generated, which is then evaluated by two reward 

schemes. 

Fig. 32. Abstracted reward policies. 
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Notably, these schemes are variable in both ambivalent brackets (CS & WF). 

The ambivalence lies within the fact that the correct & slow (CS) category 

yields a reward in the increase scheme, and conversely a penalty in the 

decrease scheme. The same logic applies to the wrong & fast (WF) category. 

Penalty and reward values range between 0 and +-0.7. Both CF and WS 

remain fixed at +1 and -1, respectively. 

As the ambivalent category values are mirrored in the opposing scheme, I 

hypothesize   the provided incentive to diverge alpha values to be captured by 

varying the weight of their contribution towards performance. This results in 

prioritizing accuracy (prefer CS over WF), or vice versa, prioritizing speed 

(prefer WF over CS), simply due to these respective strategies offering more 

reward. 

Furthermore, a custom RT criterion was implemented as well. When this 

criterion is reached, the possible feedback cuts down to either 

correct & slow (CS) or wrong & slow (WS). WS always translates to -1, but the 

CS category can be either a penalty or a bonus – depending on the applied 

scheme. Within the increase scheme, it is advantageous to pass that threshold, 

unlike so in the decrease scheme. 

For a particular set of parameters, an averaged difference in performance 

(quantified by total score) was generated by the evaluation of the performance 

of trials via two schemes. These simulated decisions were informed by the 

same parameters (alpha = 1.8, delta = 1.2). 

Each decision yields a binary correct/incorrect, as well as the response time. 

These metrics are subsequently fed into the reward scheme, which outputs a 

feedback value ranging from -1 to +1. If the decision was either correct & fast 

or wrong & slow, the feedback is identical. However, if the output is classified 

as either of the middle brackets, the schemes evaluate differently. Say, the 

decision fell into the slow correct category (RT > 1.12sec): the increase scheme 

outputs a reward (R) of +0.7 and the decrease scheme penalizes (P) with -0.58. 
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Notably, this framework allows us to test arbitrary values for the 

classifications in question. We let this decision occur k times respectively, 

which are then evaluated by the increase and decrease scheme. In this case, k 

represents 500 decisions. Again, the parameters informing these decisions 

remain fixed. We then simply determine the difference of the respective 

average bonus per decision of both schemes via subtraction. 

If the difference in the average bonus between 

schemes is positive, the increase scheme 

granted a larger bonus a.o.t. the decrease 

scheme. Conversely, a negative value is 

interpreted as a higher reward when evaluated 

by the decrease scheme.  

Now regard figure 33. The outlined scenario of 1000 decisions taken under a 

fixed set of parameters result in a 32% higher bonus in the increase scheme 

a.o.t. the decrease scheme. Figure 34 depicts the parameter space ranging 

from 0.1 to 3.5 for both boundary separation and drift rate. Blue areas are to 

be interpreted as a larger utility provided by the decrease scheme and 

conversely, red areas depict the space wherein the increase scheme was more 

rewarding.  

Fig. 34. Incentive map evaluated by reward = +0.7,  

penalty = -0.58 and classified by a RT criterion of 1.12. The 

white rectangle frames the observed parameter space 

participants operated in.  

Fig. 33. Encoding of one unit  

within the incentive map. 
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The parameter set informing Fig. 34 gives rise to a landscape which saturates 

in incentive along the upper and lower bound of the observed parameter space 

(white rectangle, Fig.34). Such an increase in color saturation points towards 

a divergence in utility for the respective strategies. Red areas point towards 

an advantage for deciding cautiously, and vice versa recklessly in blue areas. 

Generally – and cycling back to the workings of the DDM – both a lower alpha 

and a higher delta lead to decisions being taken faster and result in a higher 

probability of the trial succeeding the RT criterion and thus being classified as 

fast. Regardless of correctness, a faster decision is classified as either correct 

& fast (CF) or wrong & fast (WF). The latter yields a reward in the decrease 

scheme, whereas a penalty in the increase scheme. 

This results in a blue dominance in the low-alpha space, enveloping all delta 

values. Conversely, slower decisions have a higher chance of benefitting from 

the CS (correct & slow, rewarding) – category of the increase scheme, resulting 

in a strong dominance of red in the upper value space of alpha. Decisions take 

longer but have a higher likelihood of being correct. The saturation (respective 

dominance of a particular scheme) is to be seen as the correlate for the 

provided incentive. 

One of the advantages of this approach is to capture humanly unattainable 

parameter space. Importantly, the observable parameter space, i.e., the range 

of parameters stemming from the data is depicted as the white rectangle both 

in Fig. 31 and Fig. 34. 

Within this ‘observable’ space, the difference between-schemes ranges from -

20% to +20% but is separated by a larger large ribbon of white indifference-

space (abs(delta) <= 10%). 

I theorize that an optimal scheme would be characterized with a narrow ribbon 

of indifference, neighbored by strong (highly saturated) scheme-dominated 

spaces. 
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The narrow ribbon would entail a 

relatively small adjustment of alpha being 

needed for moving to the opposing pole of 

the SAT, which again leads to profitability 

for this particular trial. Furthermore, the 

larger the needed adjustment of control 

parameter is, the costlier this swing 

arguably becomes. Hence, keeping the 

swing small would reduce the cost of 

adaptation (III). 

Figure 35 relates back to block II outlined in chapter 5, which discusses the 

importance of detecting the possibility of optimization, initiating the 

exploration process. 

If a system starts within a broad, white ribbon (Fig. 31) the likelihood of 

detecting the opportunity of optimization remains quite low. However, if a 

system starts in a highly saturated – say red – region, the likelihood of 

optimizing parameters for the opposing context rises, as an advantage of 

operating in the increase context is mirrored as disadvantage for the decrease 

context. Consequently, it seems logical that the detection of such disadvantage 

would initiate exploration and subsequently lead to the gradual divergence in 

caution between contexts.  

Fig. 35. A desirable demarcation of 

opposing strategies characterized by 

strongly saturated incentives separated 

by a narrow white ribbon of coding 

indifference. 
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Limitations  

A substantial downside of the current implementation lies in its backend, 

which generates 500 samples twice, which are then evaluated by both 

schemes. One set of decisions is fed through the evaluation pipeline which 

yields the average bonus. This process is not only redundant but introduces 

noise while not providing any additional information. This problem is 

visualized by generating an incentive map, which codes null for the 

ambivalent brackets. 

The performance metric only considers the +1 and -1 feedback, which is 

mirrored in the scheme. Doing so, all scheme-induced difference in 

performance is eliminated and consequently all variance in performance is due 

to noise adding unnecessary and avoidable confounds to the data. 

In Fig. 36, performance differences of up to 17% are observable – again, all 

differences in performance are purely noise-driven. This variance is 

Fig. 36. Incentive map informed by null-value ambivalent brackets. As 

the utility of both wrong & slow and correct & fast trials  

(-1, +1 respectively) cancel out, no advantageous area for any strategy 

manifests. The subject has no utility in changing decision parameters. 

All color in this map stems from noise in the simulation algorithm. 
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pronounced in the low-alpha space, which is characterized by rapid responses 

and a high probability of erring but spans across the entire plane.  

Outlook 

Despite these implementational teething issues, I regard the logic and 

functions of this framework as sound – and more importantly scalable through 

its modularity. 

For instance, additional parameters can be implemented, such as collapsing 

bounds (Cisek, Puskas, & El-Murr, 2009) accounting for the rise of urgency 

with time passing, implemented as gradually lowering alpha-bounds. This 

would result in less integrated evidence needed to initiate a decision at 

timepoint t, a.o.t. timepoint t-1. 

Furthermore, one could integrate the z (bias) parameter into the model, 

investigating the incentive provided to adjust the starting point of the decision 

process. In conclusion, this framework constitutes an approach of visualizing 

the incentive provided by opposing reward schemes  to explore and 

consequently exploit respective parameter configurations. I used this method 

to validate the results stemming from real data, as well as to ideate possible 

approaches to work around the limitations found in the main body of the study. 

Further, I created a model which decomposes the process of adaptation into 

three sub-components, allowing for an individual investigation of each. 

Incentive mapping constituted a substantial role in building intuition behind 

the workings of said model. 

I believe that the presented incentive map grants its greatest value in building 

intuition for the workings of reward in DDM modeling. This educational 

aspect is further amplified by its customizability. 

As Samuel Karlin said, the purpose of models is not to fit the data, but to 

sharpen the questions. 

Likewise, the incentive map serves this purpose while further providing visual 

guidance for building intuition on the workings of reward in decision making.
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