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Abstract

Recent advances in cognitive neuroscience have brought forth a novel
perspective on the control problem, grounding it in associative learning — a
mechanism largely seen as the dichotomous counterpart of cognitive control.
An important implication following this theory is that higher order functions
are subject to the same reinforcement learning principles as lower-level
behavior. Following this notion, the prediction can be made that humans
adjust their control parameters based on learned association with contextual

cues.

The presents study was designed to explore this prediction by employing a
fast-paced visual discrimination task featuring two contexts, wherein
participants were nudged to assume high, and low caution respectively in

their decision making, which was quantified by the drift-diffusion model.

Data analysis points towards a null effect, which we attribute mainly to
flawed design elements and conclude that these need to be catered for before

a conclusion can be made.

Furthermore, a simulation-based approach will be proposed, which affords
the visual investigation of performance of a simulated system informed by a
particular set of DDM parameters. This was applied to the design and yielded
valuable insights on the observed null effect, as well as on avenues for

optimization.
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Theoretical Foundation

Introduction

Imagine the following scenario: You spend your morning in a foggy forest,
hunting for mushrooms. Doing so, your attention is set to detecting the
generic ovalities of caps, as well as the color and shapes of their stems.
Upon detection, your focus fixates on the target, confirming it as a true
positive, and further classifying its kind according to size, color and
shape. Once youre sure it’s an edible boletus, you continue your
inspection on whether it’s a ‘keeper’. To this end, you focus on the details
of the fungus: the quality of the lamellae, as well as abnormalities

indicating an infestation.

Within several seconds, your attentional mechanism shifted its focal
points from detecting shapes within foliage to classification guided by its
attributes up to quality grading informed by its detailed state. At each
stage of your decision, different goals are active and hence lead your
attentional mechanism to seek for different cues. These shifts of
attentional focus occur periodically within your hike, as each pick resets
the cycle to you scanning the foliage. You've flexibly adjusted your

attention dozens of times to align with the currently active goal.

Let’s consider a second scenario. You stand in front of your fridge and
sigh at the emptiness of your compartment. Your gaze swings to your
flatmate’s area, as a full tray of Tiramisu lays there. Enthusiastically you
take it out, energized with anticipation you lift your fork but then
hesitate; you stow both instrument and object of desire, put on your
running gear and go for a jog: You've remembered the dietary plan you
swore to commit to and moreover, you couldn’t (yet again) discard your
moral values and (yet again) dig into your flatmate’s belongings.

Although admittedly the latter scenario might be just tangentially
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scraping the bounds of realism for most of us, it illustrates the human
capability to marshal behavior to align with higher-order goals. Both
scenarios, albeit seemingly unrelated at first, illustrate the effects of a
construct called cognitive control: the capability to regulate behavior

adaptively and flexibly in order to achieve higher-order goals.

Conceptualizing Cognitive Control

Cognitive control can be defined as the capability to orchestrate
behavior adaptively and flexibly in order to achieve higher-order goals.
(Botvinick, Braver, Barch, Carter, & Cohen, 2001). The term ‘goals’ in
this context refers to abstract goal representations, such as within-task
micro-objectives in respect to which information is classified as relevant.
The attentional system informed by cognitive control affords a filtering of
sensory perception distinctly and solely for relevant cues.
(Luck & Ford, 1998). You filter your visual input for different
informational cues trying to locate mushrooms, as opposed to during
quality-grading. Further, it informs under which circumstances not to

exhibit learned behavior.

To illustrate, consider you burned yourself grabbing the blazing hot brass
handle of your skillet. One painful experience was sufficient to create an
aversion, making you hesitate the next time you reach out for it.
Cognitive control affords the ability to override such inhibition —
conditional to the certainty of it being cool. It is crucial to note that these
goals are far from rigid: Goal representations need to flexibly adapt in
ever-changing circumstances. In one moment, it is important to scan for
stems within foliage, and in the next it’s about classification, informed by
color, girth and size of the fungi. And again, in the very next moment,
you’re checking the map to remind you of the route, analyzing the finicky
lines and colors. Such flexibility of swinging seamlessly between goal
representations also constitutes an important feature of cognitive control.

(Braver, 2005).
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Another attribute associated with the exertion of cognitive control is its
subjective cost. This cost can be traced down to the cerebral energy-source
glutamate. This ‘fuel’ is a valuable and notably depletable resource within
the central nervous system. Upon depletion of this resource, the efficacy

of cognitive control substantially weakens. (Westbrook & Braver, 2015).

The human ability to exert control over our behavior, inhibit urges and
delay gratification has inspired generations of researchers. By now, it is
largely well understood how control influences our behavior and which
factors affect it. However, its underlying mechanisms are still left
unclear. (Botvinick & Braver, 2015). Incumbent theories put a domain-
general executive system in charge of control processes such as
attentional filtering, action-inhibition, task switching, conflict
adaptation, the Exploration-Exploitation-, and Speed-Accuracy-Tradeoff
(SAT). This control system is conceptualized as being top-down-operating,

as well as conscious.

Furthermore, this view posits the attribute of modularity. In such, the
domain-general control system, control is imposed by a central unit
specializing in this very function. Applied to the brain, one would be able
to delineate an area which is serving solely this regulatory purpose from

regions processing more rudimentary stimulus-response-mappings.

This means that the controlling cortex would be able to impose control

onto - but not participate in ‘basal’ stimulus-response processes.

Hence, imposing control often manifests as the override of well-learned
and habitual actions, consequently leading to control being set in
contrast, and even in dichotomy to the concept of learning. To elaborate,
associative learning is considered to be operating bottom-up: creating
associations between perceived stimuli and following behavioral
responses automatically. As illustrated, one does not need to contemplate
the pain inflicted by the blazing brass handle to conclude that it ought to

be avoided in the future, as to create that aversive conditioning.
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Closely related to associative learning, reinforcement mechanisms also
work based on associative links. Given a reward signal, a phasic upshoot
in dopamine levels throughout the cortex is triggered. This state
associates currently active contextual stimuli — informative, as well as
uninformative ones — with the behavioral response the system carried
out. Such stimulus-response associations form under the adhesion of
reward signals. (Law & Gold, 2009; Saddoris et al., 2015). This soar of
dopamine raises the likelihood of the system again performing the
reinforced behavior when met with the associated stimuli. The system
has learned to anticipate a state of high dopamine tonus following that
particular action; hence it is keen on again reaching that state, and a
strong predictor for it is performing the reinforced action. This principle
is a well-established pillar of behaviorism and dates back to Thorndike’s

prominent law of effect. (Thorndike, 1898; 1911)

To illustrate, pressing a button can be conditioned as an action predictive
of the arrival of a rewarding snack. Or to provide a more contemporary
example, refreshing your social media feed acts as a strong predictor for
the surge of that precious dopamine induced by the appearance of novel
colorful images of attractive faces. Although being blessed with the
capability of wishfully thinking us not to be susceptible to this basal
mechanism, our reward system succumbs to the same archaic

reinforcement principles as rodents and pigeons do.

In conclusion, cognitive control is regarded to be domain-general,
conscious, top-down-operating, and an effortful mechanism, consisting of
a set of supervisory processes, which are unidirectionally influencing

stimulus-response mappings.

Control Problem

Conceptualizing both mechanisms in this manner serves to delineate,
as well as to provide a metaphor to work along with. However, such

modular perspectives grant little insight into the workings of that
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‘supervisory agent’. Keeping this homunculus in charge merely
circumnavigates the question of its underpinning mechanisms, as little
explanatory value is added by attributing all responsibility of behavioral
control to a general-purpose agent. The quest to disentangle the
underpinnings of cognitive control is referred to as the control problem.
It is established that cognitive control oversees filtering our environment
for relevant information as well as facilitating the override of habitual
behavior. As mentioned, there is rich literature on the effects of cognitive
control as well as its underlying factors. (Verbruggen, McLaren &

Chambers, 2014).

Yet, it is not clear what underlies this phenomenon. It is not clear what
guides this behavior-informing system. To disentangle this problem, a

major question needs to be conquered:
‘What informs this informer?’

Further broken down into primo: ‘What informs it when to act? and

secondo: ‘What informs it how exactly to act?

Umemoto and Halroyd (2015) for instance approached this problem by
researching within an environment with multiple task options available.
They posed the following question:

a. how does the control system decide what task to execute, and b. how
vigorously to carry it out? Interestingly, they reported reward signals to
have a modulatory effect on the exertion of control. This finding
contradicts the traditional view of the control agent, as reward per

definition is not supposed to play a role in behavioral control.

Furthermore, a recent meta-analysis reports that cognitive training
rarely finds transfer. For one, they report extensive evidence that
cognitive training improves performance on the trained tasks. However,
they declare little evidence corroborating the notion of transferability: the
less related the task in question is to the one subjects have been trained

on, the less of an effect is observable. Crucially, they report that barely
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any improvement transfers into everyday cognitive performance.
(Simons et al., 2016). These findings suggest that training effects stay
bound to the task-sets they were trained in, challenging the presumption
of generalizability of cognitive control. Interestingly, such domain

dependence or context specificity is an attribute of associative learning.

Not only does this challenge the feasibility of cognitive training, but also

the very core of the incumbent modular view on cognitive control.

To make ground for an argument on the feasibility and context-specificity

of cognitive control, imagine the following scenario:

On your way to work there is an ill-designed intersection where too much
happens at the same time: the road lines are not intuitive and there is

this one billboard which hinders your view to your right.

The first times you were stressed while attentively creeping forward to
make your left turn; checking your mirrors every other second until you
passed. Fast forward a couple months: By now you have adopted a more
cautious state without really thinking about it. You happen to shift
towards a more attentive state the moment you recognize the area of the
intersection. It seems like you learned to adopt a higher attentive state
in the critical environment. As if a high alert state was stamped onto that

environment, mediated by the reoccurring need of attentiveness.

Following the traditional conceptualization of these two mechanisms, the
system would have to consciously recruit a state of heightened awareness
every time it enters the intersection. Such a state would always have to
be preceded by the aware need for a state of heightened attentiveness,

resulting in an effortful recruitment of same.

In 2016, Abrahamse and colleagues posited a new approach for taking on
the control problem. In their report, they review an array of studies which
violate the predictions of a modular perspective: Control being susceptible
to reward signals, being context specific and being manipulatable in the

absence of awareness. (Abrahamse et. al., 2016)
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Curiously, these are the very features underlying associative learning.
Moreover, these are the very attributes cognitive control was set in
contradiction to. Building upon these findings, Abrahamse et al. inferred
that the nature of cognitive control and associative learning might not be
as distinctly separated as assumed and rather have the very same
mechanisms constituting their core — positing the hypothesis that
cognitive control might be embedded into associative learning.

An important prediction that follows this notion is that higher level
control functions are subject to the very same reinforcement principles as
lower-level behaviors and furthermore, that people regulate their control
parameters based on learned associations with contextual cues. To
illustrate, let’s again picture that busy intersection. You reacted with
high attentiveness and caution to a stressful situation and experienced
the pleasurable outcome of passing unharmed: The control (network/
system) subsequently associated its parameter configuration (high
caution) and the resulting behavioral implications (frequent checking of
the mirrors, slow pace, etc.) with the context it occurred in. This results
in an associative network binding context, response, and the overarching
strategy. Subsequently, every time you approach the intersection,
contextual cues trigger this network. Upon activation, it retrieves the
embedded cognitive strategy, subsequently aligning your behavioral
response to correspond to the overarching control parameter: being

cautious.

In general, this network consists of three elements: perceptual, motor and
goal representations. Contextual features embed as perceptual
representations, actions taken as motor representations and active
cognitive strategies as goal representations. Upon a favorable outcome of
an action taken, momentarily active contextual features — informative as
well as uninformative ones — are embedded as the base of the control

network. The active goal representation can be reconceptualized as the
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present cognitive strategy — may it be pronounced caution or a high

readiness to switch tasks.

This strategy is embedded next to the contextual features and the
executed motor representation. The reward signal remains in its
traditional role of the adhesive component which induces as well as
facilitates the construction of this network. In this vein, the learning
perspective maintains the very same views on control representations.
But most crucially, it provides explanation for the domain-dependence
and lack of transfer via the context-bound embedding of control functions,
rather than with a multitude of specific control processes acting solely in
their respective competence. Similar arguments for a distributed view on
cognitive processes were made by Eisenreich (2017) in his paper

scrutinizing the modular conceptualization of the brain.

One important prediction that follows this control model is that people
regulate their control parameters based on learned associations with
contextual cues. To our knowledge, Braem (2017) was the first to provide
behavioral evidence in favor of this hypothesis. The author reports having
conditioned subjects to express a higher tendency of task switching
behavior after disproportionally rewarding alternating tasks versus task

repetitions.

In a free-choice testing phase, subjects were more likely to alternate tasks
when this strategy was reinforced in the previous phase of the
experiment. He concludes that reward indeed exerts a modulatory effect
on task switching. Several studies conditioned stimuli to act as control-
informing markers. Verbruggen and colleagues for instance associated
stimuli to act as inhibitory markers, and as markers for raised attentional
control. (Verbruggen & Logan, 2008).

Furthermore, Braem and colleagues reported that novel task instructions
were more easily adopted in an environment, which was previously

associated with a higher occurrence thereof. (Braem et al., 2020).
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In order to adopt a new task instruction, a suitable goal representation
needs to be generated, consequently replacing the former one. The new
behavioral response subsequently shifts to being informed by this novel
set of goals. He concludes that a higher readiness of running this
integrative process was associated with a contextual cue, as subjects
required less time to adopt new instructions in the trained context as

opposed to controls.

More recently, Prével and colleagues (2021) reported a modulating effect
of reward signals on conflict processing. This function of resolving conflict
is essential to shield us from distracting information or prepotent
response options, therefore contributing to the maintenance of goal-

directed behavior.

Prasad and Mishra (2020) reported reinforcement playing a mediating
role on control on the masked priming effect. Prior reward association of
a given stimulus modulated the perceptual saliency of same in a non-

reward testing phase.

Contemporary approaches to investigate the extent to which cognitive
control can be conditioned mainly relied on blocked designs: throughout
dozens of trials the subjects gradually learned to associate the stimulus
with a particular expression of control. These learned associations were

then again tested in a blocked manner.

The present study explores the possibility/attempt of conditioning control
parameters beyond the realm of stable learning environments.
To this end, an environment has been designed where the stimuli are
presented in one of two locations, which we’ll further refer to as contexts,
or condition. Each context has its own reward policy, and the presentation
of contexts fluctuate trial-by-trial / on a trial level, with the policies

remaining stable within -context.

The reward policies incentivize different cognitive strategies. Therefore,

it was advantageous to exert a particular strategy in context 1 and to
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apply the converse approach in the other. Rephrased, upon context swing
it was optimal to also adapt the strategy and parallelly shift the
expression of control. It is crucial to understand that the same response
can be evaluated differently in each context, therefore — to behave
optimally, one had to pick up this difference in reward signals and adapt
the strategy accordingly. This study first ought to investigate whether
humans are capable of detecting this delta in reward signals within such
a volatile environment. Building upon this, we aim to explore whether
humans are able to adopt these optimal strategies and swing between
them trial-by-trial. Thirdly, we aim to answer the question, whether such
goal-representations get associated with the context, and if they transfer

and remain stable in the absence of reward.

To this end, we engineered a task design incorporating three attributes
of associative learning: reward-sensitivity, contextual dependence, and
the absence of awareness. The strategy we chose to investigate is the
expression of a strategy called Speed-Accuracy-Trade-off or rephrased as

cautiousness.

The Speed-Accuracy-Tradeoff

The Speed-Accuracy-Tradeoff — further referred to as SAT — describes
the cognitive strategy to either prioritize accuracy or speed in decision
making. On one end of the spectrum — emphasizing accuracy over
speed — a higher accuracy across multiple decisions is generated but
speed sacrificed, entailing slower response times. This is counterposed by
emphasizing speed, yielding quicker response times with the tradeoff of
having a higher probability of erring. Gaining pace in decision speed
entails the sacrifice of accuracy across trials, resulting in a higher error
rate. To illustrate, let’s regard a scenario way back in Paleolithic times.
Our protagonists are Bert and Bob, two Neanderthals working as

gatherers for their tribe.
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One day, as usual, Bert takes his basket and sets out to forage. While
collecting fungi he is cautious in his decisions. Each fungus needs to be
inspected thoroughly to ensure its edibility, as erring, viz. returning with
inedible ones would lead to physical unease at best and poisoning at
worst. While foraging, he begins to traverse into the territory of a rival
clan, unmistakably marked by a peculiar kind of pointy trees. His
mindset changes into wanting to quickly fill up his basket, as it is
advantageous to spend as little time as possible in such a dangerous area.
Finally, Bert returns to his home cave and hands over his yield: The cook
1s upset, as he had to filter out way more wrongly picked mushrooms than

usual.

How can that be? The larger number of erroneously picked mushrooms in
Bert’s basket can be explained by a shift of control parameters informing
his decision making. By being in an uncertain and possibly dangerous
environment, he adjusted his expression of SAT towards the speed pole,
emphasizing speed over accuracy. Simply due to the rule of thumb ‘the
more time you spend in a dangerous area, the higher the probability of

finding out why it is known as such’.

This unaware adjustment of his caution parameter enabled him to
optimize his behavior in alignment to the situation he was in as well as
the goal under which he was operating: Emphasizing a quickly filled up

basket, taking the risk of lower accuracy doing so.

However, his cousin Bob sadly did not evolve to express such flexibility in
his cognitive control parameters. Bob set out to forage and similarly
ended up in an area under the control of a rival clan. As opposed to his
cognitively flexible cousin, Bob did not adjust his SAT. He thoroughly
inspected every fungus, which led to him spending additional time in this
area. Consequently, Bob was spotted by a hostile scout and ambushed on

his way back, never returning.
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Mourning, Bert promises vengeance against his cousin’s assassins.
Again, he sets out to forage, but this time he remains in the clan’s area,
avoiding the path he once took. As he further wanders, he notices the
same kind of peculiar trees which marked the enemy’s territory, however
still being in allied space. This thought soon fades while he continues

filling up his basket.

To his surprise, he gets scolded by the cooks as he returns: Again, they
found more inedible mushrooms than usual. Why didn’t he spend more
time selecting? He might as well have spent the normal time doing this
task, probably coming back with more utilizable ones. Instead, he was
back early, his yield speckled with inedible fungi. In disbelief, Bert looks
towards the sky and realizes that in fact he returned much earlier than

usual. Why didn’t he take more time in his decisions, he wonders.

Following the associative learning perspective, Bert associated the goal
of expressing a lower degree of caution with the contextual cue of that
peculiar kind of tree. The tree was encoded as a contextual stimulus for

triggering a low caution during decision making.

Then, without him being | ., o
aware, this control network v
Hostile

was triggered while executing v

Unknown Allied

the same task, being

surrounded by the same

contextual stimuli. This time

‘decision

subsequently informed his
Fig. 1. Bert’s yield in three scenarios. The plot

control parameters and led to codes accuracy on the y-axis and speed on the

. o . x-axis. Each triangle is characterized by a

him swinging from expressing different position on the Speed-Accuracy-
Tradeoff.

a high degree of cautiousness
to the converse. With this goal active, he took less time deciding and

raised his error rate.
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Bert associated the context he was in with the goal representation
informing his behavior. This led to him responding appropriately to the
environment at hand. The attribute of domain dependence activates the
network when encountering the embedded contextual stimulus. In Bert’s
case, a particular type of tree triggered the previously created network

for lowering his caution in picking fungi (Fig. 1).

Presumably, Bob would not be underperforming in this novel setting as
he would have remained cautious. Being cognitively inflexible, he would
have kept foraging as usual — slowly and accurately. Unlike in Bert’s case,
no control network would have been formed and consequently couldn’t
have subliminally driven control parameters based on contextual
markers. Sadly, one wouldn’t be able to test this notion, as — crucially —

Bob 1s dead.

Computational Modeling

The Speed-Accuracy-Tradeoff can be further characterized not only by
response times (RTs), but also the variance thereof — both for correct and
erroneous decisions taken. From this decomposition, a peculiar pattern
emerges: Fast decisions result in a lower variance of their response times,
contrasted by a wider spread of RTs in slow decisions.

(Heitz, 2014 for review).

To explain such peculiarities, cognitive researchers employ
computational tools which model the process in question and thereby
provide insights into its underpinnings. This model consists of an
algorithm which formalizes the problem in computational terms by
removing all irrelevant features of the decision process and only
incorporating the presumably relevant ones. This reduction in complexity
is simply due to the notion that one cannot capture the working of each
synapse within the control network; one does not have insight into the
cognitive system, so its workings need to be approximated by reverse

engineering.
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Each model includes several parameters, which are assumed to

approximate cognitive components relevant for the decision process.

These parameters ought to capture the influence of real word factors

substantial for the process in question.

In the following section, I will first introduce unidirectional race models.
These systems model processes for instance, wherein one ought to
recognize an object varying in informational quality through a reduction
of same. This reduction can be created by the injection of Gaussian noise,
or by simply removing parts of the image. Essentially, the decision is
made when enough evidence for the nature of a distorted image is

accumulated.

Subsequently, build upon this concept to introduce a numeric tool used

for computational modeling of bi-optional decision making processes.

Unidirectional Recognition Models

As mentioned, the informational quality of the presented stimulus is
assumed to hold relevance for the decision making process. To illustrate,
picture a task wherein you are instructed to hit a button the very moment

you recognize the nature of the two stimuli of figure 2:

Both depict the same object but differ in informational quality. Stimulus

1 can be classified easily.

However, stimulus 2 — providing less 7-
information — offers lower quality of evidence 2

q |
and hence demands more time to be recognized. Jﬁﬁ;ib P, B{r

A model using only this parameter would
. . . Fig. 2. Stimulus set 1.

predict the average response time for high

evidence images to be substantially faster than for lower quality stimuli.

level of integration rises until a threshold is reached, initiating the

decision. The amount of evidence needed to reach that bound represents

the second parameter of this model — alpha (a). A higher bound means

that more evidence is needed — the system takes longer to reach certainty.
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This ‘race’ towards the decision threshold is the eponymous attribute of
this model. Lastly, the time between stimulus onset and start of the
decision process is called non-decision time — encoding period — and will

also be referred to as theta (0).

Boundary separation -
[}

bias z

time

Fig. 3. Schematic of a rise-to-threshold model applied to a recognition tasks.

To summarize, our model decomposes 2afc decision making into the

following parameters:

a) bias z, b) non-decision time 60, c¢) rate of evidence accumulation § and

d) vertical distance from starting point to the decision threshold a.

Integration level is coded on the y-axis and accumulates over time, which
is depicted on the x-axis (Fig. 3). The accumulation of evidence over time
draws from the notion of sequential sampling: at each time step t, the

system integrates presented evidence.

Upon stimulus presentation, your visual system claims some time to
sensorially process and encode the presented stimulus — accounted for by
the parameter theta. From that point on, the decision process commences

at starting point z.

The evidential quality of the stimulus informs the rate of deliberation,
visualized as the accumulation of evidence ‘racing’ towards the decision
bound. The higher the evidential quality, the more information can be

extracted per time step, which results in a steeper integration-slope.
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Keeping all other parameters constant, both increasing the slope 6 and
raising the starting point z decreases the response time, as the former
leads to a steeper integration and the latter reduces the size of the

decision space a and hence shortens the distance needing to be covered.

Additionally, increasing a results in the need for more evidence having to
be integrated to initiate a response. Consequently, the decision process
demands more time. We can formalize response time ¢ as a function of the
distance a in respect to slope 6 and the nondecision time 6:

t—a+9
=5 )

Crucially, the equation above holds true only in the absence of noise.

In a noise-free world, deliberating the same stimulus under a fixed set of

parameters would always take the same amount of time.

Unfortunately, we happen to exist in a noise-riddled environment. Hence
it is assumed that all sensory input we process is noisy, consisting of noise
and signal. Signal, or information, is all sensory input relevant for our
decision — in our case the ‘isolated’ representation of the stimulus. Noise
on the other hand is the umbrella term for essentially everything else
effecting the process. This can be internal physiological noise influencing
the efficiency of our visual processing system, or intrusive thoughts —
regardless of valence — surfacing, pulling attention away from the
decision making process. Furthermore, bodily factors such as even slight
hunger or completely external ones such as the audible weeping of a
toddler nearby. Also, everything perceived in peripherical vision can

constitute distractors.

Crucially, one has no way of knowing the individual influence these
distractors entail. Noisy constituents are too vast to capture or to model,
hence one reverts to subsume all these factors under one term, which then

again can be incorporated into a model: statistical noise.
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As we've seen in the introduction, response time distributions deviate
more for slow decisions as opposed to fast ones, so the model needs to be
further modified to account for this phenomenon. This is achieved by

introducing noise into the model.

To illustrate, regard again Fig. 3: Both slopes/integrators start from the
same point and must accumulate the same amount of evidence (a) to
reach the decision boundary. Both parameters a and z stay constant,

varying only in their integration rate delta:

System 1 integrates at a higher rate, depicted as a steeper slope. Due to
its delta being higher compared to system 2, it reaches its decision bound
faster on average. System 2 operates with a lower delta and consequently
requires more time to reach its boundary — deciding slower. Due to its
decision taking longer, it is likewise exposed to the influence of noise for
longer. The longer the exposure, the stronger response times deviate and

the larger the variance across trials will be.

Noise is implemented as a constant factor and its influence stands in

direct proportion to time passing.

This relation is visualized in figure 3 through the ribbons around each

integrator. The slower a system integrates, the wider the ribbon becomes.

Therefore, race models predict a higher variance of response times for
slower responses, operating with a flatter integration slope. Conversely,
decisions steered by a steep integrator slope occur quicker, entailing a

lower deviation of response times.

With this relation in mind, our model offers an explanation for the
observed variance patterns by decomposing a complex process into
several subsets of it. The outlined race model attributes the occurrence of
deviating variances to noisy interference modeled using a linear buildup

of statistical distortion within each decision.

Crucially, such conceptualization of noisy interference implies that said

pattern is not set in stone, as the depicted ribbon represents one standard
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deviation from the mean — meaning that only 68.3% of the observations
are expected to occur within the respective ribbon. Consequently, the

model predicts 31.7% of all observations to occur outside of it.

Therefore, it is quite plausible to observe a slower outlier of system 1, as
well as a faster outlier of system 2, resulting in the ‘slower in nature’
system 2 responding faster than system 1. Under the assumption of
Gaussian noise, individually unlikely observations become expected

across a vast number of trials.

By now, I've outlined the application of race models within recognition
tasks. The response was initiated upon stimulus classification. Within
the decision process, evidence was sequentially sampled — and
incrementally accumulated until a threshold was reached which led to

decision onset.

Building upon this foundation, race models can be extended to model
decision processes between two choices — these architectures are referred

to as drift-diffusion models.

Drift-diffusion model

Bioptional modeling adopts many characteristics of its unidirectional
counterpart, as it also assumes the integration of evidence towards a
constant threshold. Drift-diffusion models double the decision space each
decision occurs in by introducing a second bound. Consequently the
integrator activity can race towards either: its operational space now
spans between the two bounds and its starting point being located

centrally at time point 0.

Depending on the model configuration, bias z can shift towards either of
the bounds, hence ‘biasing’ the decision process by reducing the distance

to the respective bound. This property is the namesake of z.

Bidirectional models operate in the realm of tasks which offer two
response options and presume a decision at every trial. The umbrella

term for this task paradigm is “two-alternative forced-choice task” (2afc).
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A bidirectional race model models a decision taken between two choices,

formalized as upper and lower bound.

A common 2afc task is the visual discrimination task, consisting of a

stimulus which must be classified as belonging to one of two categories.

Fig. 4. Target stimulus 1 with a color
coherence of 70% (blue).

The present study uses such a paradigm, wherein one ought to decide on

the dominant color represented in a dot cloud (Fig. 4).

The difficulty of such visual discrimination is defined by the color
coherence. High coherence represents a low difficulty as opposed to low
coherence, which is substantially harder to differentiate as the ratio of

the colors converges toward 1:1.

Let’s model a trial of this task using the DDM framework: Succeeding the
stimuli onset, a stimulus encoding period theta precedes the decision
process. Subsequently, the integrator starts the deliberation of the
stimuli: Depending on the informational quality of the stimulus, evidence
toward one or the other choice is accumulated with rate delta. The better
the evidential quality, the easier the stimulus deliberation. This leads to
a higher integration rate and ultimately results in a faster decision. To
use different wording: evidence for each bound competes with each other.
When evidence towards one bound substantially overpowers its
competitor, the integrator has an easy time deliberating the stimulus

which allows for a rapid decision.
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Again, this process is subject to noise, so that decisions informed by the

same drift rate do not always terminate at the same time
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Fig. 5. Schematic of a Drift Diffusion Model decomposing a decision into non
decision time and noisy evidence accumulation.

(producing RT distributions) and do not always terminate at the same

boundary (producing errors). (Ratcliff & McKoon, 2008).

In this paradigm, the level of integration is subject to forces towards both
bounds, resulting in upward, as well as downward directed movements.
Visualized, the integrator performs a wiggly drift reminiscent of a
Markovian random walk (Fig. 5). This drift is the name giving attribute

of bidirectional Rise-to-Threshold models: drift-diffusion models.

The parameter delta is reconceptualized into drift rate: i.e., the
rate/vector at which the drift strives towards the correct boundary. This
again is determined by the quality of the sensory evidence with its lower
bound being at null: Such a null-drift-rate is present while trying to
deliberate an indifferentiable stimulus. I.e., a fully coherent stimulus

consisting of an equal representation of either color.

Importantly, drift-diffusion models do not operate with one fixed drift

rate. Rather, drift rates vary randomly across trials in a stable pattern or
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probability distribution. The shape of this distribution is informed by the

stimulus’ evidential quality.

Each trial, a delta value is sampled from its distribution. DDM accounts

for noise by this implementation of parameter sampling.

As mentioned, the drift does not always terminate at the same boundary.
This occurs when noise is perceived as information and the integrator
accumulates evidence toward the incorrect bound. The harder the task
difficulty (the lower the coherence), the higher the probability of erring.

To illustrate, consider a novel stimulus:

Fig. 6. Target stimulus 2 with a color
coherence of 52% (blue).

Regard again stimulus 1 (Fig. 4) and stimulus 2 (Fig. 6). The former
stimulus is easier to discriminate, as it provides stronger sensory
evidence, whereas discriminating stimulus 2 can be considered to be more
difficult, because it provides less evidential quality (a lower difference in
colored dots). Hence a system would integrate the evidence of stimulus 1
faster (operating with a higher drift rate), resulting in quicker response
times. Conversely, increases in task difficulty lower the drift rate, which

leads to increases of average RT and a decline of accuracy rates.

Again, the quicker a decision is taken, the less noisy interference occurs

to the deliberation process, producing a lower variance.

Stimulus 2 is less evident by nature, which consequently lowers the drift
rate steering its deliberation process. A lower drift rate again results in
more time required to reach the necessary level of evidence, leaving a
larger temporal window for noise to exert influence: Response times

deviate greater.
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Boundary separation within drift-diffusion models define the vertical
distance separating both boundaries (Fig. 5), therefore constituting the
space the drift can occur in. Reducing a means that less evidence is
needed to initiate a decision. Consequently, this lowers average response

time, while also increasing error rate across trials.

This is a product of variability in drift rates induced by noise, which can
drag the drift towards the wrong boundary and — given a low enough
threshold — result in erring. Increasing a on the other hand increases the
evidence needed to initiate a decision, resulting in slower response times,

as well as higher accuracies.

Does this tradeoff sound familiar? The alpha parameter models the
Speed-Accuracy-Tradeoff (SAT) or caution in decision making. A cautious
decision will be modeled as operating with a relatively higher alpha than
a careless one, reflecting the position within the SAT in decision making.
Cautious decisions operate with a higher a, careless ones under

a lower a.

Figure 7 depicts the same decision as figure 4 did: all parameters besides

a were kept constant.
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Fig. 7. Schematic of a lower alpha parameter applied to a Drift Diffusion Model.
The lowered bounds facilitate the creation of errors by shortening the distance
between the starting point and the decision threshold.
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The reduced a value is visualized as lowered bounds — a smaller distance
separating the starting point and its respective decision thresholds. In
the early stage of both processes, noise substantially interferes with the
deliberation process, dragging the integrator towards the wrong
boundary. The system of figure 5 avoids erring, as its boundaries are high
enough to continue sampling evidence and discriminate noise from actual

information, eventually resulting in a correct response.

Conversely, the system depicted in figure 7 operates carelessly with a
lowered boundary separation. It needs less evidence to initiate a decision:
The noise-driven swing satisfies the threshold — visualized via the red

marker.

It i1s important to note that the erroneous response was initiated
substantially faster than the correct one. The decision onset is depicted
as red markers set at the point where the drift reaches a boundary. This
illustrates the Speed-Accuracy-Tradeoff in decision making in the drift-
diffusion model. As previously outlined, this expression of caution is a
cognitive strategy in decision making and belongs to the parameters of

cognitive control.

Using this methodology of computational modeling, we can infer the
expression caution across as well as within participants. The DDM

outputs an estimate of the underlying parameters of the behavioral data.

Therefore, we can not only

sign | Parameter

Compal‘e RTS and accuracy 5 Drift Rate/ Quality of sensory evidence

o Boundary Separation / SAT / Cautiousness

rates, but also caution — drift

Bias / Starting point

Non-decision time

rates of participants.

Further, we can statistically Fig. 8. Summary of DDM parameters.
test differences between

parameters in both contexts.
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Summary

To this end, we designed a bipartite environment, wherein reward signals
differ between contexts, albeit remaining stable within context. For an
optimal performance, subjects ought to raise their expressed degree of
caution in one context, and lower it in the other. Contexts altered trial-
by-trial, hence the window of picking up the difference in reward signals
was extremely short for each exposure. Moreover, we test whether this

divergence remains stable in the absence of reward signals.

The associative learning perspective on cognitive control predicts that
these reward signals can be picked up via unaware mechanisms also
underlying associative learning: The applied cognitive strategy would
gradually become associated with its respective context via reward
signals, hence resulting in a contextually conditioned expression of

control parameters.

By observing that the divergence of caution remains stable in the absence
of reward, we can conclude on evidence that cognitive control is indeed
susceptible to the same basal mechanisms originally attributed only to

associative learning.

Our study aims to provide further clarity towards the question whether

cognitive control can be subject to the principles of associative learning.
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Chapter 2:
Method

The present study ought to explore the extent to which conditioning of
control parameters is possible within a volatile learning environment.

To this end, two contexts were introduced within our environment,
namely the top and bottom half of the screen (£2° vert. visual angle,
figure 8). In each context, different reward policies were used to evaluate
the subject’s performance. It is crucial to understand that identical task

performance was evaluated differently in each context.

Materials

The experiment was performed on a computer monitor with a
diameter of 17 inches, a resolution of 1920 x 1080 pixels, and a refresh
rate of 60 hertz. Participants were positioned at a distance of 70 cm from
the monitor. The experiment was designed in PsychoPy
(Peirce 2007; 2009) and featured a visual discrimination decision making
task. After an individual difficulty calibration, the task remained

consistent throughout the experiment.

The survey was conducted in a dimly lit cubicle. To account for precise
recording of response times in the range of psek, a Cedrus Response Pad
RB-740 was used as the input device. Participants rested their fingertips

comfortably on one response key.

Participants

53 participants (37 female, aged 18-34, M=22, SD=2.42) took part in
the experiment. All participants had normal or corrected-to-normal
visual acuity. All subjects were students at Ghent University. They
signed informed consent prior and received one participation credit in
return for their participation. One participant also received a coupon for

the online marketplace bol.com with a value of EUR100,- for having
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acquired the highest score in the experiment. This reward was

communicated in the introductory part of the survey.

Reward scheme

Each decision was classified as a. Comoot | Gomoct& | Wiong & | Wrong &

Fast Slow Fast Slow

correct or incorrect, b. fast or slow

and c. which context it was taken in. It || ™ 0 e
follows a 2x4 matrix of possible feedback |speed + 0.5 *0 -1
conditions (Fig. 9). Fig. 9. The applied reward schemes.

This resulted in correct & fast (CF), correct & slow (CS), wrong & fast
(WF), and wrong & slow (WS) — brackets for each context. Both CF and
WS were evaluated in the same way across contexts: +1 and -1,
respectively.

The manipulation is located within the inner columns. In the accuracy
condition — the one supposed to increase caution — it was optimal to
prioritize correct, though slow decisions as opposed to erroneous and fast
ones. However, the speed condition, which ought to decrease caution, and
shift toward a speed emphasis on the Speed-Accuracy-Tradeoff, had these
values inverted. Within this context, it was optimal to sacrifice accuracy

to gain in speed, as the penalty was given in the correct and slow bracket

(CS).

Given the same distribution of responses within an experiment, a more
speed-focused strategy accumulated more bonus points in the speed-
condition and adopting a more cautious strategy amassed more bonus

points in the accuracy condition.

This delta in performance evaluation ought to nudge the subjects into
adapting their SAT to optimize performance and maximize the gained

bonus. The rationale behind this scheme was adopted from Fitts (1966).
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Trial Design

Now, to incorporate volatility, the presentation of these contexts
fluctuated trial-by-trial. A context was consecutively presented three

times at most.

The task at hand was a perceptual discrimination task, wherein subjects
had to classify stimuli into one of two categories. Subjects had to choose
between two response options each trial, constituting a two alternative

forced choice task paradigm (2afc).

Namely, participants ought to decide which color is majorly represented
within a cloud of dots as mentioned before. Within this environment, we
ought to condition subjects to adopt a cautious strategy when the
stimulus is presented in one context, and conversely a less cautious one
in the opposing one by varying the reward contingencies between

contexts.

Stimuli

Every trial started with the presentation of a fixation cross on a
lightly gray background (PsychoPy rgb = [0.88, 0.91, 0.91]) for a fixed
duration of 500ms. Its location varied between three levels (top, center,
bottom) across the experiment and was informative of the location the
following stimuli would appear in. After 500ms, the cross was replaced by
the task stimuli, consisting of two-colored flankers and the target
stimulus, which was to be classified. The target consists of 200 colored
dots. Each dot is colored in either cyan (PsychoPy rgb = [0.11, 0.67, 0.56])
or orange (PsychoPy rgb =[1, 0.32, 0.22]).

Fig. 10. Target stimulus with a coherence of 55% (blue).
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The relative distribution of the colors represents the difficulty of the task
and will be further referred to as stimuli coherence. Participants ought to
visually analyze the stimuli and decide on the predominantly represented
color. A low coherence, say 55%, entails a narrow delta between the
amounts of dots and hence raises the difficulty to discriminate the
dominant color. In this example, the dots are colored representing a
110:90 ratio (Fig. 10). Vice versa, a high coherence, say 70% represents a
low degree of difficulty to discriminate the dominant color.

The target appears along two horizontally flanking stimuli (+6.5° visual
angle respectively). These remained fixed on their respective horizontal
position during the whole experiment, so the participant could habituate
to their positions and focus on classifying the target. The participant
ought to visually analyze the stimuli and decide on the dominant color of

dots.

Fig. 11. A target with a coherence of 70% (blue).

One then presses the button, which stands for the majority-flanker. A
time window of 5000ms was provided for each decision. Upon response,
or after the deadline was reached, the feedback was presented in place of
the target. Depending on the stage of the experiment, the feedback was
either masked (####), numeric (+1/ -1/ +0/ -0.5) or a string (‘correct’/
‘Incorrect’), as well as ‘te laat’ (Dutch ‘too late’) appearing when the

deadline was reached.

Procedure and Block Design

The present study ought to explore the possibilities of conditioning

control parameters within a volatile environment. To this end, an
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experiment consisting of three major epochs was engineered. These can

be further grouped into two periods of interest (Fig. 12).

Participants were randomly, though in equal numbers, assigned to one of
four groups, counterbalancing a) the color arrangement of the flankers,

and b) the assignment of reward policies to context-locations.

 — — PO
POl 2
[ Demo I Calibration ][ preLearning | | Learning |iiu postLearning
correciness correciness Hi# scheme #iH
1x8 1x 80 2x 80 6 x 80 2x 80

Fig. 12. Block-level design of the experimental procedure.

Demonstration Block

An introductory text followed informing the participants about the
workings of the task, the temporal expense of the study as well as the

possibility to have a self-timed break between blocks.

To get to know the task procedure, subjects completed a short
demonstration block of 8 trials with moderate difficulty (randomly
sampled coherence values around 0.6). Feedback of correct/incorrect was

displayed and the stimuli remained vertically centered.

After the demo another instruction block followed stating that after the
following block, the accumulation of points will commence, followed by an
emphasis on a gift card worth EUR100,-. Furthermore, the competitive
aspect was emphasized by stating that only the best player will earn that
reward. Additionally, it was recommended to already take the following
block seriously, as it may provide a competitive advantage. Subsequently,

the procedure of the following blocks was explained.

Throughout 10 blocks of 80 trials each one may accumulate a score with
the goal being to give correct answers as quickly as possible to maximize

one’s score.
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Training Block: Difficulty Calibration

To ensure a comparable strain at decision making between all
subjects, the task difficulty was individually calibrated. This was done
using a staircase method (Wetherill & Levitt, 1965), specifically an
adaptive fixed-step-size calibrated according to Garcia-Pérez (1998). The
rationale of this method is to let all participants go through a common
task difficulty calibration in order to let them converge towards a cross-

participant comparable difficulty level.

Within this block, performance was solely evaluated as correct or
incorrect. All stimuli were presented in the vertically centered position
throughout trials. A goal of 75% accuracy was set for all participants to
converge on. The coherence of the target represented the task difficulty:

a high coherence constitutes an easy difficulty and vice versa.

Pre-Learning Phase

After the difficulty calibration,
participants completed two blocks of o '
80 trials each with their individual Sl
difficulty level. This epoch introduces Fesdback
the trial-by-trial fluctuation of the

contexts, as well as masked feedback Fig- 13. Schematic of the task set up
during pre-learning.

display: ¥ (Fig. 13). No true reward

was assigned, as the necessary values for evaluation were not yet
calibrated. However, participants were told that they were being
rewarded, albeit their reward being hidden. This setup is further referred
to as masked feedback. Within these two blocks, an RT-threshold was
calibrated, which delineated fast from slow responses. Therefore, all
correct RTs were logged, sorted and the 60th percentile of this array was

used as the discriminatory value, further referred to as response time

criterion (RT criterion). This epoch is of high importance for the latter
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analyses, as it logged the subject’s performance before the onset of the

learning process.

Learning Phase

The subsequent learning phase then implemented both calibrated
values and fluctuating contexts: the difficulty as well as the rtc to
evaluate each decision according to the rewards scheme. Within 6 blocks,
participants completed 480 trials in total in both contexts, which ought
to nudge the participant into adopting a different reward schedule in

each.

In accordance with the associative learning perspective on cognitive
control, the delta in reward signals was supposed to be picked up by the
control system informing caution within the decision. By registering
reinforcement exerting caution in one context, the control system seeks
to optimize its performance. Therefore, it adopts a cautious strategy — an
accuracy emphasis — in one context. Conversely, it registers inverse
reward signals in the opposing context, and adapts strategy accordingly

toward a speed-emphasis.

This drive to maximize bonus and consequently maximize the chance of
winning EUR100,- was the incentive for the control system to find a way

to optimize performance.

It’s important to keep in mind that one aim of this study was to find out
whether this difference in reward could be picked up by the subjects as
well as the extent of their adaptation to it. These 480 trials constituted
the window in which this was supposed to take place. Furthermore, these
trials serve the purpose of forming associations between the cognitive
strategy and the context it was exerted in. This network would iteratively
strengthen, as it yields reward signals for using the right strategy — high
or low caution, respectively. Conversely, the absence of reward signals
e.g., using the ‘wrong’ contextual strategy would incentivize the system

to find a way to optimize its bonus, therefore randomly adapting, until
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picking up on the right strategy and from this point, converging toward

the right end on the pole, towards the right strategy to implement.

Post-Learning Phase

Given the creation of a network associating the cognitive strategy
with its respective context, the post learning phase ought to answer the

question of stability after reward signals cease.

The post learning epoch again consisted of two blocks a 80 trials with
masked feedback display and fluctuating contexts. The difference to the
pre-learning epoch is that subjects were still rewarded in the background.
This was not possible in the early phase as the values for the reward
policies had not been calibrated yet. This change happened in the back
end only, subjects had the same experience in the third epoch as they did
in the first.

Awareness test

Lastly, a questionnaire was implemented to check for subject
awareness of the study design. This questionnaire consisted of an open-
question part, followed by a multiple-choice section. Former inquired
whether a difference in reward schemes was noticed in the two contexts

and if so, to briefly outline it.

The latter showed three options to choose from: first was that some
participants were rewarded at the top of the screen for being careful /
giving mostly correct answers and were rewarded in the bottom half for
being careless / giving especially quick answers. The second option stated
exactly the opposite as statement 1 and indifference in reward schemes

constituted the third option.

Procedure Summary

Regard again figure 12. The learning epoch, period of interest 2
(POI-2, 6 x 80 trials) covers the development of control parameters within

the learning phase. This period tracks a. if and b. how strategy
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distributions develop upon onset of reward signals. (Orange highlight

in Fig. 14).

Period of interest 1 (POI-1, 2 blocks a 2 x 80 trials) compares the
parameter distributions of epoch 1 and 3, to test a. if, and b. how strategy
distributions have changed from their baseline. Figure 14 illustrates the

two POIs. Here, 2 blocks were condensed into epochs (E) for readability.

We hypothesize that each subject exhibits the same level of cautiousness

for both contexts within epoch 1 — the baseline.

Progressing through the learning phase, the subject’s expression of
caution gradually starts to diverge between contexts, reaching its peak
distance at the very end of epoch 2. In epoch 3, this difference in
cautiousness ought to shrink due to absence of reward signals, but

nonetheless remain observable.

Data analysis

Both periods of interest were separated and analyzed individually. Period
of interest 1 enveloped the pre- and post-learning phase
(blocks 2,3,10 & 11). This period was characterized by masked feedback
and compares the development of drift-diffusion model parameters

before, and after the learning phase.

Period of interest 2 captures the trajectory of parameter evolution

throughout the learning phase | B N ‘ T

(blocks 4-9). Within this period, o o %
‘&e“ |

reward feedback was displayed. | ¢ o

°
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This reward ought to condition the
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Fig. 14. Anticipated divergence in assumed
caution across the experiment. Two blocks

signals. Epoch concatenates two Were collapsed into one estimation block (E)
for the sake of readability.

expressions of caution via reward

blocks and hence an epoch

featuring 80 trials in each condition is created. This transformation was
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crucial to have a block large enough for the subsequent parameter
estimation. (Lerche, 2016). In this notation POI-1 envelops epochs 0 & 4,
and POI-2 includes epochs 1, 2 & 3.

Statistical analysis was conducted with the statsmodels 0.13.5 module
and always featured a = 0.05. Visualizations were created using
Matplotlib (Hunter, 2007), as well as the Seaborn library (Waskom, 2021)
in Python 3.8.8.

Data preparation

RTs deviating from the mean by more than 3¢ (absolute z-score >3;
RT > 1.885) were identified as outliers. (see Berger, 2021 for discussion).
No negative z-scores passed the threshold of z = -3. Furthermore, over
half of the outliers occurred in the pre-learning phase (57%), suggesting

that they are mainly due to learning effects within the new task.

RTs of outliers as well as trials featuring null-RTs (n=6) were identified.
An exclusion of these trials wasn’t feasible, as we needed 80 trials per
block and participant for the upcoming analysis. In total, 795 RTs were
corrected at individual level by adding 30 to the mean of the respective
block. This clipping was done for 1.8% of total observations.

Demonstration and calibration block were omitted from the analysis.

Period of Interest 1

The nonparametric Wilcox signed rank test was employed to analyze
RT-distributions within POI-1. This method was preferred to paired T-
tests because of the violation of the normality-assumption. Wilcox does
not assume normality, but rather similarity of distribution shape across

groups as well as the given attribute of sphericity.

First, the between-context-variance of the pre- and post-learning epochs
(EO, E4) was analyzed, followed by a between-context analysis of
block 4 (B4) (last pre-learning block) and B10 (first post-learning block).
This way we intended to capture the effect of the rewarded learning phase

on post-learning blocks in relation to the pre-learning baseline.
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In the beginning epoch (0), the distributions should not vary, as no
learning was applied. Hence, epoch 1 was tested bidirectionally (two-
sided): Ho: PE0ncrease * 1E0ecrease, | and respectively:

Hi: }lEOincrease = }lEOdecrease

For epoch 4, we hypothesized that the increase-condition will have
distribution shifted to the right, characterized by slower values and
conversely, the decrease-condition a higher density of faster values.
Therefore, we applied a one-sided test: HO: pE4increase < pF4decrease.

And respectively: H1: pB4increase > pF4decrease.

Additionally, a subject-level 2x2 rm-ANOVA (Girden, 1992) was applied
to dissect the factors condition and the block on RT distribution between

the two epochs.

Period of Interest 2

Dealing with correlated datapoints, a repeated measure 2x6 ANOVA
was conducted on response times with condition (increase/decrease) and
block as within-subject factors. Given a large enough n, ANOVAs are
known to be robust against violations of normality (Lix, 1996). In this

case, each of the 2x6 conditions consists of 2120 samples.

Due to the absence of an effect, employing post-hoc tests to determine

directionality was refrained from.

Parameter Estimation with the Drift-Diffusion Model

To estimate DDM parameters, we used hierarchical Bayesian
estimation. This has the advantage of individual fits being bound by
group-level distributions (Wiecki, 2013). Hierarchical DDM was chosen
because the estimates of parameters are allowed to vary trial-by-trial,
affording the capability to model fluctuations of neural or psychological
variables within a process. This attribute makes the HDDM
(HDDM 0.6.0, pyMC 2.3.6) package incredibly useful for the modeling of
decision-making processes. The HDDM uses Markov-Chain-Monte-

Carlo-sampling (MCMC) for generating posterior distributions over
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model parameters. The incorporated Bayesian statistics in the HDDM-
backend allows the quantification of not only the most likely parameter-
value, but also its distribution. Such an approach generates valuable
knowledge about the associated uncertainty of a parameter-estimate
through its variance. Due to the hierarchical nature of the HDDM-
architecture, estimates for individual subjects are constrained by group-
level prior distributions. Subsequently, individual parameter estimates
lose statistical independence and inference is only meaningful at group-
level. In particular, the model was specified such that on each trial t, the
bias remained fixed at alpha/2. Alpha (boundary separation), delta (drift
rate) and theta (non-decision time) were set to be based on the categorical

estimator coded to be dependent on condition.

By convention, the expected outlier percentage was set to 5%. For the
estimation, the original outliers were again introduced to the dataset, as
the HDDM removes them by default. Besides, no manipulations were
applied. 4000 samples were drawn from this model, discarding the first
1000 samples as ‘burn-in’. Hypotheses in this case followed the same logic
as the ones underlying the Wilcox paired rank test: The baseline epoch 0
was hypothesized to have no variance across conditions and was tested
bidirectionally.

HO: pE%ncrease # 10decrease, and respectively: H1: pEOncrease = 1E%ecrease
RT distributions of epoch 4 were expected to have a higher mean in the
increase group a.o.t. the decrease group.

HO: },lE4increase < }1E4decrease, and respectively Hi: }1E4increase > }1E4decrease

One problem of DDM fitting occurs when the respective chains do not
converge to the same stationary distribution and the MCMC algorithm
subsequently does not sample from the actual posterior. The R-hat
statistic compares between-chain variance to within-chain variance to
control for this issue. Throughout all chains (parameters of both POIs for

each participant), R-hat values of ~1 (X = 1.002) were observed.
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Additionally, the Geweke statistic comparing means and variances of
sequences from both head and tails of chains returned True, further

indicating successful convergence.

SAT-Graphs

Recall figure 1 from chapter 1, depicting the SAT of Bert the
neanderthal illustrating the proportion of edible goods in his basket in

relation to the time spent — a so called SAT-graph.

On SAT-graphs, time is coded on x,
whereas y codes the proportional | plcorrect |
correctness or accuracy. Black
annotations depict data points, which

were taken in temporal steps. It is

important to understand that the graph

time

does not provide information about these

step sizes, as it depreciates them to Fig. 15. Generic SAT-Plot coding
. . accuracy on the y-axis and time on
ordinality. the x-axis.

The green sample was followed by the blue sample, as denoted by the blue
arrow. We know that between these samples a shift towards a more
accurate behavior occurred. The same behavior applies to the next
samples, resulting in the starred sample which has the highest
expression of caution — taking a lot of time and yielding high accuracies.
This introductory figure is smoothed to an increasing function for clarity,
but SAT-graphs in real world data are seldom so docile. They often change
direction and cross each other; hence it is important to keep in mind to

follow the order of the connections (depicted with arrows).
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Chapter 3:
Results

Participant exclusion

No participants were excluded from the analysis, leaving the sample size
at 53 subjects. Although detecting four significant outliers for calibrated
coherence and response time criterions, no participants overlapped.
Furthermore, no noteworthy deviations in mean RT or accuracy rates across
participants were observed. Additionally, RT-distributions of each participant
were inspected, which all showed the expected right-skewed shapes that
response times characteristically follow. These findings suggest that all

participants took the experiment seriously and performed accordingly.

Descriptive Analysis

The relation of both coherence (task difficulty) and response time criterion

(slow-fast-threshold) in the participants’ total score was first analyzed.

As expected, there was a significant positive correlation between RT criterion
and total score (r=0.53***). This is sound, as a high criterion raises the
chances of reaching the +1 reward, which is independent of the currently

active scheme.

However — and interestingly, there was a non-significant negative correlation
between the coherence and total score (r = -0.18). Upon exclusion of subjects
with outlier criterions (r > 1.56sec, n=4), this correlation turned out to be

driven by same and corrected to a marginal r = 0.03. This fortifies the notion
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that the coherence calibration worked
as intended and successfully normed
the task to individual skill-level.
Importantly, the winner was no

outlier in either value.

Fig. 16 shows a 3D-scatterplot
illustrating the relation of both
coherence and response time criterion
to the total score. The red circle

highlights the winner (RT criterion =

1.19 sec, coherence = 56%,
score = 523).
On average, the response time

criterion was calibrated at 960ms
(std=230ms), and coherence at 56%
(std = 0.2%).

From  wvisual inspection, RT-
distributions did not seem to vary
across groups and only marginally
across blocks, (Fig. 17). Importantly,
no divergence in response behavior is
observable across conditions. When
the RTs shifted, they did so equally in

both conditions.

Awareness Test
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Fig. 16. 3D Scatterplot depicting the relation
of RT criterion, coherence and the attained
score.
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Fig. 17. Boxplots depicting RT distributions
across the experiment for both conditions.

Subjects were randomly, although in equal numbers, assigned to a context

mapping, which assigned reward policies contexts. Mapping 1 (N=26)

indicates that the increase reward scheme was attributed to the upper

location. Vice versa, mapping 2 (N=27) indicates the bottom location being

rewarded by the increase scheme.
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At the end of the experiment subjects were asked
whether they noticed any pattern in the reward
contingencies, followed by a multiple-choice
questionnaire consisting of three choices.
Subjects’ responses are depicted in Fig. 18.

Correct answers are highlighted in green.

Across both mappings, the same pattern was
observed. Namely, both statement 1 and 3 were
preferred a.o.t. statement 2. Exhibiting the same
tendency across mappings suggests that the

mapping-counterbalancing did not influence

48
Mapping Statement
1
10 Accuracy in upper location
5 Accuracy in lower location
11 Indifference
2
14 Accuracy in upper location
3 Accuracy in lower location
10 Indifference

Fig. 18. Results of the awareness
test for each condition mapping
across subjects. Green highlight
indicates the subjects’ mapping.

the

statement-choice or

awareness of subjects. Furthermore, this indicates that subjects giving a

correct answer were not aware of the nature of the rewards schemes, but

supposedly subject to sequence effects of the questionnaire.

Period of Interest 1

POI-1: Inferential Statistics

In general, RTs were characterized by

significant divergence from normality.

Moreover log, square root or cubic-root

Sample Quantiles

transformations did not achieve normality
according to Shapiro-Wilk. (Mishra et. al.,
2019). QQ-Plots further exemplify this by
visually displaying deviance from the normal
distribution. The closest approximation to
by

achieved log

albeit

normality was

Sample Quantiles

-4 -3 -2 -1 [} 1

Theoretical Quantiles

decrease - trials

transformations, remaining

significantly deviant from it. L T SO S T T
Theoretical Quantiles

A violation of the assumption of sphericity Fig. 19. QQ-Plots for increase (upper)

. and decrease (lower) condition. Both
makes the ANOVA, as well as Wilcox test suggest the violation of normality.

highly susceptible to type II error, hence
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Mauchly's Test of Sphericity was applied to test the data. Results suggest that
the assumption of sphericity is not violated, as chi2 = 3.67, W=10.93 and p =
0.599.

The comparison of conditions within epoch 0 (pre-learning) via the Wilcox
signed rank test shows the expected non-significance

(z = 4368133, p = 0.48).

It was hypothesized for epoch 4 to be characterized by a right-shifted
distribution in RTs resulting in a higher mean. This hypothesis was falsified,

as z = 4554729.0 and p = 0.18.

The 2x2 rm-ANOVA likewise resulted Anova
in no significance regarding the factor | F Value Mum DF Den DF Pr > ¥
. . . condition 9.1854 1.0000 52.0000 0.6685
condition. Factor estimation block |estim 169.1429 1.0000 52.0000 ©.0000
condition:estim 2.2294 1.0000 52.0000 ©.8646

(estim) turned out to be highly
L . Fig. 20. rmANOVA for Period of Interest 1.

significant (***), but this was

expected, as it models between-epoch effects. Our interest lay in the within-

block factor condition, which remained absent.

POI-1: SAT-Plot

Figure 21 visualizes the 087 — Decrease

behavior of each POI-1 block e
and condition within SAT-

0.855 //.,\

. . ’// \

space. This figure was scaled g 0w | // \
for the sake of readability. |[& °* /= \ 2

0.84 2
Blocks of the pre-learning , //<
phase are situated on the right, s /

0/ —

and post learning on the left 0825

850 900 950 1000

Side- time (ms)

Importantly, six learning Fig. 21. SAT-Plot for blocks pre- (2,3) and post- (10,11)
learning phase.

blocks separate points 3 and 10,

so the connecting line must be interpreted with caution. Rather, it depicts the
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vector with which both epochs traveled across SAT space, modulated by the

learning phase.

Across the POI, a speedup of 195ms occurred, while generally losing accuracy.
The decrease group lost more than the increase group, albeit this difference is
marginal (delta= 0.9%). Increase group’s initial increase in accuracy (+1.7%)
is not interpretable, as it occurred before learning commenced. This graph
ought to visualize the shift within the SAT space induced by the learning
block. We anticipated a divergence between groups to be perceived with the
increase condition moving to a locus of higher accuracy and slower RTs, and
the decrease condition sacrificing accuracy to gain speed, moving to a locus in

the lower left.

While it holds true that the increase group generally exhibits a higher
accuracy, both conditions begin in a similar area (as anticipated), but also end
up in the same general space, only separated by 1% in accuracy with identical
pace. No divergence occurred. This again illustrates that the learning phase

failed to diverge conditions within SAT space.

POI-1: DDM Parameter Estimation

Posterior distributions as output by the

Accuracy Condition Alpha Densities

10 — E0
E4

DDM tell the same story: No divergence in

boundary separation occurred. In both

posterior densities

conditions, subjects shifted to a less cautious

strategy throughout the experiment. The — -
12 13 14 15 16 17 18 19
Boundary Seperatian

Bayesian nature of this model allows for

Speed Condition Alpha Densities

10 — E0

statistical analysis, testing whether the =

distributions behaved as hypothesized. As

posterior densities

stated in the analysis section, we

hypothesized that alpha values increase in W |
Boundary Seperation

the accuracy condition, whereas decrease in . ]
y ’ Fig. 22. Estimated alpha posterior

the speed condition. Latter hypothesis was densisites prior (E0), and post (E4)
learning phase for increase (upper)
accepted (***) — however, the same behavior and deacrease (lower) condition.
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occurred in the accuracy condition, which ought to increase alpha values.
Hence, the former hypothesis is rejected (p=0.99). Likewise, the interaction

between block and condition was also insignificant (p=0.54).

Period of Interest 2

POI-2: Inferential Statistics

Again, Mauchly's Test of

Anova

Sphericity was applied to the data, F Value Num DF Den DF Pr > F

resulting in the upkeep Of the condition 2.1431 1.9008 52.08000 0.7068

block_id 21.549@ 5.0000 260.0000 0.0000

. . condition:block_id 1.4227 5.8080 260.0000 0.2163
assumption of sphericity -

(chiz = -370,W = 1626, p =1). Fig. 23. rmANOVA results for learning blocks

o ) o 4-9 of Period of Interest 2.
Statistical analysis within the

learning phase was conducted via repeated measure ANOVA modeling
condition and block as within-subject factors. Factor block, (=progress
throughout the experiment) turned out significant (***) in explaining variance
of the response times. However, this is most likely due to effects unrelated to
the nature of the study. We ought to test for the influence of the factor

condition, which remains vastly insignificant.

POI-2: SAT-Plot

Within the learning phase, the

=~ Decrease

subjects generally gain 133ms in 03 H D
speed, while sacrificing 2% in | b
8 /4/// 4

accuracy. The same moving pattern |_ /,e"\\ e o
. . .. E o5 I\ / e
is mirrored across conditions. The | / 8] \ o

L\ /

L 0.8 / \

averaged transition from b4 to b5 9/ \ e

59

(86ms) 1s most pronounced,

accounting for 65% of total shift in

720 740 760 780 800 820 840

time (ms)

Fig. 24. SAT-Plot of learning blocks 4-9 for
merely 0.8% of accuracy. This both conditions.

response time, while sacrificing

acceleration of RTs while keeping the same accuracy is most likely due to

learning effects, which drive a more efficient performance. Progressing to b6,
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both conditions keep the same pace while losing accuracy, followed by a
divergence in b7, although in the ‘wrong’ direction: The decrease group shoots
up in accuracy (+1.4%), while the increase group performs identically to the
previous block, resulting in a delta of 2%. Subsequently, the increase group
performs the largest jump in accuracy from b7 to b8 (+2.4%), while becoming
marginally faster (-10ms). Finally, both groups converge to a similar position

for b9.

In general, both conditions exhibited the same pattern within the learning
phase, becoming less cautious while gaining speed in the process. The
aforementioned divergence cancels out by plotting POI-2 as epochs instead of
blocks (Fig. 24). Notably, the movement within SAT space only occurs to the
left: The learning phase is characterized only by acceleration, no slowing

occurred between blocks.

POI-2 Feedback Distributions.

Feedback has only been given from block 4 on, wherein the necessary
values for the reward scheme were calibrated. Hence, only POI-2 is subject to
this analysis, as the post-learning block lacks its reference.
Figure 25 depicts histograms of feedback distributions across, and within-

blocks. Both +1 and -1 feedback categories were excluded, as they were

0.35 Feedback

0.3 cs

WF
0.25

0.2

0.15

percentage

0.1

0.05

0
40 41 50 51 60 61 70 7.1 80 81 90 9.1

index

Fig. 25. Feedback distribution for POI-2 considering only the
ambivalent classifications. The labels p.q are to be read as: the first
integer (p) representing the block index, whereas the second one
coding the condition (0 ~ increase; 1 ~ decrease).
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assigned identically across conditions. It was expected to observe an increase
of trials classified as wrong & fast (WF) in the decrease scheme and an
increase of correct & slow (CS) trials in the increase scheme. For the decrease
scheme, the blue WF category is advantageous. Conversely, trials evaluated

by the increase scheme benefitted from the orange CS feedback.

Two neighboring bars represent a block, indicated by the first number of the
index (1.x). The second number following the dot represents the
condition: x.0 reads as increase (accuracy) trials, whereas x.1 reads as
decrease (speed) trials. This way, an inter- as well as intra-block comparison

of feedback distributions was possible.

It was hypothesized to observe a divergence in these values as the system
progressively begins to adapt. The increase condition of block 6 was expected
to consist of a respectively larger proportion of SC, a.o.t. the decrease
condition, which ought to consist of more WF trials in respect to SC. Again, no

such effect can be observed.

The only noteworthy change in feedback is from block 4 to block 5, reducing
the percentage of SC trials across conditions, keeping WF constant. Notably,
only marginal changes within blocks can be observed. This again fortifies the
notion that adaptation did not occur. Ratios remained the same across the

learning phase instead of diverging within blocks.
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POI-2 DDM Parameter Estimation

lee POI' 1 ’ a snnﬂar pattern Of Increase group Alpha posterior densities

. . . 14 — El
parameter shifts across conditions can be — B

12 \ — E3
observed. From el to e2, participants |o

reduced their level of caution, which

remained at the same level for e3. :

Considering the unambiguous absence of an ot e ~ ey - 4
Boundary Seperation

effect, statistical analysis via rm-ANOVA

Decrease group Alpha posterior densities

was refrained from. B £

10

@

o

'y

~N

11 12 13 14 15 16
Boundary Seperation

Fig. 26. Estimated alpha posterior
densisites throughout the learning
phase for increase (upper) and
decrease (lower) condition.

Relation of SAT Graphs to Alpha Densities

I'd like to dedicate the last section of this chapter to the elegant relation of
Speed-Accuracy-Tradeoff graphs and DDM posterior estimates. Figure 27
depicts the POI-2 epochs (6 blocks condensed into 3 epochs), starting from el

(first learning epoch) to e3 (last learning epoch).

This has the same connotation as in the posterior density plots of figure 26.
Viewing both side by side illustrates the relation of SAT graph and alpha
density: An epochs position within the SAT space defined by two coordinates
(accuracy & response time) directly translates to the posterior density of
alpha. Alpha posterior density seems to combine the information given out of
average RT & accuracy into one metric. Importantly, as mentioned in the DDM

section, HDDM parameter estimates are only meaningful in group level
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comparison. Likewise, it would be impossible to approximate the alpha density

of a single point on SAT space without reference samples.

0.815

0.81

0.805

P(correct)

+— Decrease
—+— Increase

720 730 740 750 760 770 780 790 800

Response Time (msek)

Fig. 27. SAT Graph of POI-2 estimation blocks (e) of the learning phase for
both conditions. For readability, blocks 4 & 6, 7 & 8 and 9 & 10 were collapsed
into el, e2 & e3, respectively. Color encodes the condition.

The distance traveled within SAT space between el and e2 is larger in respect
to the distance separating e2 and e3, which suggests that a larger shift in
caution occurred moving from el to e2 compared to the shift from e2 to e3. This
1s the pattern across groups. Figure 27 depicts precisely the same pattern of
shifting caution: The posterior density shifts stronger from el to e2, a.o.t.
shifting from e2 to e3. The distance crossed mirrors the shift of alpha
distributions. Alpha is a unidimensional metric, conveying the information of

two-dimensional positioning on the SAT graph.

Now, regarding the movement between conditions, one can observe that
within the increase condition, a relatively larger shift occurs from e2 to e3
(+1.5% accuracy & -17ms), than within the decrease condition (-0.43%
accuracy & -23ms). From e2 to e3, a larger distance is covered in the increase
condition, a.o.t the decrease condition. Now, regarding the alpha densities for
e2 & e3 for both groups, one detects this very same pattern: Alpha density of

e2 and e3 in the increase group deviate more than in the decrease condition.
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Summary

Figure 28 visualizes the movement of epochs and conditions across the whole

experiment.

0.88
-~ Decrease

=»= Increase

0.86

el
0.84

P(correct)

0.82

e3
0.8

0.78
750 800 850 900 950 1000

Response Time (msek)

Fig. 28. Graph depicting all estimation blocks (e) across both conditions within SAT
space. Color codes the condition. Both conditions trace the same general pattern.
Little variance across conditions can be observed.

Throughout, the same pattern is mirrored across conditions. Epochs 0, 1, 2 &
3 continually accelerated in response time (-277ms), while sacrificing accuracy
(-4.2%) in the process. This trend was reversed in the transition from e3 to e4,
returning to almost baseline accuracy (+3.7%) while slowing 83ms in relation
to e3. Notably, e4 converges to almost baseline (e0) accuracy (delta = 0.6%)
while responding almost 194ms quicker. The transition to masked feedback
seems to drive up RTs which entail higher accuracy rates, generally shifting
towards more cautious behavior. This suggests that the masking of feedback
— or the absence of a numerical one — reduces urgency to respond and drives
decisions to higher caution via the slowing of response times. Although this
study was not designed to test this notion, this finding might point to an
interesting avenue to explore further. Importantly, epochs exhibited the same

movement across conditions.

To conclude, conditions did not diverge in caution and all findings

unequivocally point to the absence of an effect.
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Chapter 4:

Limitations

Limitations of our study can be clustered into issues regarding the frontend,
namely the reward policies and the presentation of reward to the subject and

the calibration of the response time criterion in the backend.

Form of reward

Notably, participants in the present study were not subject to reward
signals per se, but rather to a proxy of it. Amassed score raised the chance of
winning a gift card but the score/ or feedback itself was not informative to the
participant on their chances of winning. Neither trial-by-trial, nor at the end
of the experiment, where the score was displayed. The score only becomes
meaningful for the analyst comparing all participants — outside the scope of
each singular participant. This way, the subject itself did not have insight in
the determinant metric of his performance, and his feedback becomes a distant

proxy of the anticipated chance of payoff, rather than actual reward.

Presumably, this rather indirect relation between displayed value and its
meaning might have been too vague for the reinforcement system to interpret
as reward. This argument refers to block 1 of the discussion, covering the
problem of salience. In future approaches, one could transform the reward
presentation into absolute units where the displayed value directly translates
into financial gain or loss: the feedback ‘+1’ would actually gain the

participants a penny, and a -1 would take one away.

This way one could provide more tangible reward feedback, which could
arguably create a more salient signal to be picked up by the reinforcement

system.

In conclusion, the modus of reward presentation might have been a

substantial factor driving the observed null effect. As we ought to manipulate
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the archaic system of reinforcement learning, the implemented reward signals

might have been too vague to be picked up by reinforcement mechanisms.

Reward Scheme

As will be discussed in section General Discussion, the reward scheme
constituted the very core of our experiment design. Participants ought to be
manipulated into adopting different expressions of caution by being exposed
to two contexts, each associated with an individual reward policy. The results
of our simulated incentive maps suggest that these did not provide sufficient
incentive for the system to adapt diverging strategies between contexts. A
model outlining hypothesized reasons can be found in chapter 5. The proposed
framework of incentive maps provided important insights into the workings of
various reward policies and helped us sharpen our understanding of our study
design. Further, it points out promising directions to take in creating a reward

scheme which satisfies the balance between salience and unaware processing.

Awareness Test Bias

As outlined in section General Discussion, awareness check responses
might have been subject to recency or primacy effects, nudging participant to
choose the first or last option. To ensure that the reward scheme really
remained undetected, this effect needs to be controlled for: future studies
ought to cycle the statement options, i.e., via balanced Latin squares

(Lewis, 1989).
Response time Criterion

Lastly, I'll address the implementation of the response time criterion. This
metric was calibrated in blocks 2 & 3 of the experiment
(chapter 2: Pre-Learning) and was used to determine whether a response was
classified as slow or fast via our reward scheme. We hypothesized that |
fatigue and learning effects would cancel out while progressing
through the experiment, but this turned out to be highly wvariable
between participants. As outlined in chapter 3, we observe a rather large

variance between participants in their RT criterion (std = 225ms by x=960ms)
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a.o.t. the coherence metric (std = 2%, X = 56%). This circumstance becomes

visible when plotting the percentage of trials per block which have passed the

threshold (= were classified as slow). Neither the mean, nor standard deviation

varied significantly across conditions and were hence aggregated in figure 29

for the sake of readability.

The graph depicted in figure 29 generally follows the same inverse quadratic

pattern as the response time plots do (Fig. 17): declining during learning and

rising in the post-learning phase.

The calibration pipeline shall be re-engineered
to drive the variance induced by block factor
beneath the variance induced by subject factors.
Moreover, the RT criterion ought to control the
effects occurring in transitions from feedback to
masked feedback. Ultimately, this eradication
would lead to between-condition effects
becoming more salient. To this end, one could
implement a dynamic threshold (sliding
window), which is informed by the average RT
of the last k response times and weighted by the
participants accuracy. This could account for
training, as well as fatigue effects on an
individual level, as the threshold adapts to the
subject’s performance and presumably ensuring
the comparability of response time criterion

passings across subjects.

p(passed) across conditions

plpassed)

8 10
block

Fig. 29. Averaged proportion
of trials reaching the RT
criterion across blocks
(subject average).
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Chapter 5:

General Discussion

The following section explores possible explanations for the observed absence
of an effect. Three hierarchical steps will be discussed, which are hypothesized

to be necessary for an adaptation to occur.

The present study ought to investigate

whether humans are capable of picking v
up a subtle difference in reward policies
unwittingly while alternating between

two contexts. The contexts incentivized
I [ possibility of I incentive to ] I

cautious and reckless decision making, adaptation adapt

respectively via differing reward detection of divergent policies ] I

policies. Crucially, these contexts
Fig. 30 Proposed hierarchy of

fluctuated trial-by-trial, keeping the prerequisites needed to be met for an

. adaptation to occur.
temporal window of exposure to each
policy very narrow. Building upon this notion of reward difference detection,
the study ought to explore whether humans are able to adapt cognitive
strategies ‘on the fly’ — informed merely by the presented context. Ultimately,
the study ought to test whether such divergence in cautiousness a. occurs and

b. remains stable in the absence of reward signals.

The task design was centered around three attributes of associative learning:
reward-sensitivity, contextual dependence, and unawareness. These were
implemented by a bonus system, exposure to two contexts and a fast-paced

task, respectively.

I identified three mechanisms with hierarchical dependence, which
presumably constitute the prerequisites for adaptation to occur. From now on
the subject of the investigation will be referred to as "system". The term
represents the reinforcement mechanisms exerting influence over the control

system informing the subjects’ behavior and therefore performance.
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To achieve the desired outcome of embedding control parameters into a context
(V), the system had to be conditioned to adapt different strategies for either of

the contexts (IV). This adaptation requires two processes to take place:

In order to adapt, the possibility of reward optimization by a modification of
strategies must be detected/realized (IIT). Such detection is made substantially
more difficult if the system starts in a ‘hybrid’ parameter configuration amidst
the two poles of the SAT, not receiving the benefit of neither a purely cautious,

nor incautious strategy.

Building upon this detection, the swing in control parameters must be
sufficiently incentivized (II). The subjective cost of adaptation must be
outweighed by the respective anticipated reward — in our case the chance of

winning a gift card, as well as its value.

Lastly and fundamentally, the divergent reward policies must be salient
enough to be picked up by reinforcement mechanisms (I), albeit still being kept

subtle enough to remain in the absence of awareness.

Only if prerequisites I, IT & III (blue outlines in Fig. 30) are fulfilled the reward
sensitivity of the system activates and sets the foundation for contextual
adaptation to occur. Crucially, we have no insight into the fulfillment of each.
The desired outcome would only become observable by adaptation, which
needs all requirements to be satisfied. This circumstance is made even more
complex by the unwitting nature of this adaptation process. We cannot ask the
participants what would incentivize them to adapt, as it is no aware process
per definition. In order to disentangle the problem of adaptation in such a
fluctuating environment, each requirement must be explored individually.
Ultimately, the challenge is to investigate, as well as to initiate a mechanism
you only get feedback on if it works. Beneath that threshold of adaptation, our

most powerful tools are informed guesses, or tinkering, as one could say.
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Notion 1 - no detection of differing reward contingencies.

Adaptation can only occur when the system recognizes an advantage in
pursuing it. Foundational to such incentive is the detection of differing reward

signals between contexts.

The major problem at this stage is to engineer a reward scheme salient enough
to be picked up by reinforcement mechanisms, while remaining subtle enough

to stay ‘under the radar’ of conscious processing.

Our data suggests that the latter requirement was met, as subjects did not
display awareness of the reward policies according to a self report.
Participants across mappings displayed the same pattern in awareness-
statements: The upper context seemed to have been associated intuitively with

a more cautious approach in both mappings, regardless of the actual mapping.

These results suggest that the manipulation remained in the absence of
awareness. However, it remains unclear whether the difference in reward

policies was salient enough to be picked up.

Notion 2 — No opportunity for optimization detected.

Moving upstream, the next hurdle is to showcase room for reward
optimization. A system can start the experiment with an alpha-configuration,
which can be described as hybrid or a central position amidst both poles. No
incentive of adapting strategies manifests, as no advantageous strategy is
promoted. Consequently, the system does not detect room for optimization,

resulting in the continuance of the incumbent hybrid strategy. In order to

engage optimization, the system has to detect a disadvantage in its current

environment and the possibility to optimize it.

Let’s assume that a system commences the experiment with an instruction-
informed high degree of caution. In the increase context, it behaves optimally
and gradually it’ll detect a disadvantage of its current strategy when deciding

in the opposing context. This would trigger an exploration of possible
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strategies in the suboptimal context resulting in the gradual convergence to

decreased caution in same.

Essentially, the system must detect a disadvantage to explore for
optimization. Once optimized by diverging the expressions of caution, the
system would shift into exploiting this configuration. Consequently, this would
lead to contextual parameter embedding mediated by reoccurring reward
signals. In this vein, this subset of the adaptation problem verges into the

realm of the Exploration-Exploitation-Tradeoff.

Performance Comparison under rtc = 0.94

increase-scheme

indifference

Boundary Seperation o

decrease-scheme

1 2 3

Drift Rate 6

Fig. 31 Incentive map reflecting the experimentally applied reward
policies. Red color reads as the parameter set being more profitable
for the increase scheme and vice versa for blue color. The white
rectangle frames the parameter space participants operated in.

Figure 31 shows a heatmap capturing performance differences of simulated
trials evaluated by both policies. (This is outlined in detail in chapter 6). In
this context, the term ‘performance’ is used as the amassed bonus across many
trials, not the speed or accuracy of the decisions taken (i.e., within decision set

performance).

The x and y axis code boundary separation and drift rate, respectively. Each
unit of the heatmap contains the normalized reward difference of the same

decision, evaluated by opposing schemes.
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As these simulated decisions also account for noise, trials characterized by

differing RTs as well as accuracy rates are created.

A negative value of this difference is coded as blue, which interprets as the
decrease-scheme turning out dominant in that particular set of parameters.
Vice versa, a red coding (a positive value) reads as the increase scheme being
more advantageous. White and close to white tiles depict areas of indifference:
no reward scheme turned out to be dominant; or put differently, one
configuration of parameters led to comparable bonus outcomes in both

schemes.

In this way, a metric was created to compare which policy is more
advantageous to a system when taking a decision informed by a particular set
of parameters. Importantly, the evaluation parameters (policies) used in this
simulation are identical to the ones used in the main body of the experiment.

The RT criterion of 0.94 constitutes the average value of our subjects.

The upper section of figure 31 covers an area characterized by high values of
boundary separation/caution, which is rewarded by the increase scheme. This
results in a stronger red coloring, as the system accumulates more points by
being evaluated according to the increase scheme as opposed to the decrease
scheme. A delta in performance of up to 40% emerges. The increase scheme
ought to reward highly cautious decision making and the upper area captures
decisions informed by this very parameter expression of high alpha.
Conversely, the lower part of the map displays the area of operating under a
low degree of caution, resulting in the decrease scheme being more rewarding:
A low degree of boundary separation amasses more points and hence
dominates the performance-delta by up to 30%. However, these values are

unattainable by participants.

Notably, the white rectangle depicts the area which our subjects operated in.
This observed space is mainly populated by white tiles, depicting indifference
between schemes. Furthermore, the main body of participants started off with

an alpha of 1.6 and shifted further down to 1.3 across the experiment. This
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ribbon of alpha values is characterized by a performance difference ranging

between one and 15%.

Incentive maps suggest that building block 2 of the pipeline was not satisfied.
In our configuration, the reinforcement system would have had to pick up a
marginal incentive, which I deem unlikely to have occurred. Building upon
these results, we conclude on the notion that too little incentive was given to
have initiated an exploration, which renders the subsequent adaptation of
SAT parameters unattainable. The used reward policies provided marginal

incentive to initiate a reinforcement-driven adaptation of cautiousness.

The introduced simulation approach constitutes a powerful tool for exploring
possible reward schemes, as well as their utility when governed by different
RT criterions. Furthermore, it enables us to extend our investigation beyond
the bounds of observed expressions of parameter configurations. This notion
as well as the modeling of various reward schemes will be continued in
chapter 6. In this case, the simulations provided rich insights into our
experimental design by showing too small a difference in reward signals
between our policies. This suggests that subjects likely did not pick up a
difference in schemes and subsequently did not detect the possibility of

optimizing their performance.
Notion 3 — Adaptation Cost outweighs Payoff.

Even if I and II were satisfied, a third prerequisite building block needs to
be catered for, which is subject to the notion of inherent costliness of cognitive
control and its component of flexible adaptation in particular. We theorize that
mainly two costs are to be considered: firstly, the cost of resources expensed in

the shift and secondly, the temporal cost of shifting parameter configuration.

The former one consists of economic consideration regarding the subjective
cost of adaptation: the exultance of mental effort is weighed against the

subjectively perceived likelihood and quality of the anticipated payoff.
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Payoff in this case depends on a. the likelihood of winning and b. the sum of
money anticipated to be won. Both factors combined constitute the provided

incentive, which is faced by the costliness of adaptation.

The second factor of costliness — opportunity cost of time — is characterized by
the surplus in RT, which is needed to shift parameter settings. This surplus
would mount onto the response time additively. These additional milliseconds
can be determinant for the categorization into slow or fast. To further
investigate this notion, computational models of statistical optimization

within decision making can be applied, as reviewed by Bogasz (2007).

Again, regarding our reward policies, such crossing of the RT criterion is
detrimental in the decrease scheme (possible feedback [-.5, -1],
speed condition), whereas less so in the increase scheme (possible feedback
[0, +1], accuracy condition). Paradoxically, the decrease context would likely
penalize an adaptation because of the temporal cost the switch in strategy

would entail.

In summary, the time-, as well as effort-related cost of rapid adaptation must
be compensated by the perceived payoff. Only then will the system initiate the

effortful adaptation process.

This third stage constitutes the last building block of our model characterizing
the underpinnings of rapid control adaptation. I hypothesize, as mentioned,
that all three must be satisfied for the reinforcement system to pick up the

exploration process towards optimization.

Conclusion

Despite inconclusive results this study provided valuable insights for a
further approach of the research question. The applied experimental design
did not initiate a context dependent divergence in caution. However, we
attribute this absence to a malfunctioning experimental design, rather than

to the impossibility of achieving said divergence.

Interestingly, an effect of masked feedback was observed, which seemed to

have enlarged both RTs and accuracy rates. Likewise, a shift to the top-right
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(accuracy-domain) within the SAT-space was observed when transitioning
from the last feedback block to masked feedback phase. This might open an
interesting alley for future research investigating the role of an active reward

display vs. a masked one while instructing equal evaluation in the backend.

The main contribution of this study is an array of valuable insights for the
design of studies targeting this archaic reinforcement mechanism and its
activation for regulating control parameters. With information sampled along
every step of this journey I ideated a model aiming to explain the observed
null-effect by decomposing the problem into hierarchically structured building
blocks. Doing so allows for the individual investigation of each block, which
will lead to the engineering of the optimal study design. Notably, this operates
under the assumption that trial-by-trial control conditioning is possible. This
approach of optimizing the study design is only one avenue to take for future

research.

However, one ought to keep in mind that this whole problem might not be
solvable. Potentially, cognitive control cannot be conditioned with such short
windows of exposure to reward signals. Following this more pessimistic notion,
another avenue opens up for approaching upcoming research, namely
manipulating the windows of exposure to reward signals. Studies using
blocked designs have managed to achieve the anticipated conditioning of
control. Subsequently, it would be interesting to explore that space between
block-, and trial-wise shift of reward policy. A mini-block of say 10-20 trials
for each policy could be implemented to explore at what block size threshold
the possibility of conditioning ceases. This second avenue would take a
functioning blocked experimental design and iteratively lower the block size

until no conditioning can be observed.

These avenues are by no means mutually exclusive but constitute two
approaches needed to be taken to sharpen the understanding of the adaptation

problem within volatile environments.
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It 1s established that a block-wise adaptation occurs, which begs the question
of where the threshold lies. The present study communicates that a trial-by-
trial adaptation did not occur. If after thorough experimental re-engineering
this absence of adaptation remains, one can assume that it indeed is not

possible.

Now, I pose that these findings represent two poles on a spectrum of reward
exposure. The present study using window sizes of < 3 represents one pole.
Opposing are studies using blocked design (nt~40, i.e., Braem, 2017) which
achieved control conditioning. The space between 3 and 40 trials of reward
exposure constitutes the spectrum. Now, how far can one decrease window size
while still observing an effect? It would be interesting to see where that line is

drawn.

Further I believe that this point does not constitute the end of the journey but
rather a beginning from which one can embark on the exploration of the
underpinnings of control conditioning. Regarding the complexity of the
cognitive system, it will most likely not be as simple as decreasing block size
of the same experimental design up until the point of no adaptation and
concluding to have found the answer. Furthermore, it would be even more
interesting to explore which modifications to study design could drive this
threshold even lower. Presumably, more refined measures need to be taken
from that point on to further decrease block size while keeping the adaptation
in the absence of awareness. Subsequently, the outlined building blocks will
once again become relevant, as each needs to be optimized for the respective
task design. I hypothesize the role of incentive to gain more weight the lower

the block size becomes.

In the upcoming section, a computational framework will be introduced which
targets the incentive provided for switching control configurations via

opposing reward policies.
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Chapter 6:

Incentive Mapping

We recognized that the incentive to shift along the SAT axis is hard to
capture. A substantial factor to this problem is the fact that we are trying to
influence an unaware mechanism. This problem essentially translates to
investigating the role of incentive in reward sensitivity within associative
learning. Applying this to our case, I theorized that this problem can be
decomposed into I. creating detectability, II. displaying the possibility of

optimization and III. providing the incentive to adapt accordingly.

To provide insights into this cluster, a Gorrect & | Correst & | Wrong & | Wrong &
Fast Slow Fast Slow

framework was engineered, which formalizes

. . . Accuracy +1 R P -1
‘provided incentive’ as the performance

difference resulting from comparable |speed + P R -1

decisions being evaluated by opposing

schemes (Fig. 32).

Fig. 32. Abstracted reward policies.

If decisions informed by a given set of parameters result in more bonus in
scheme 1 as opposed to scheme 2, this parameter set is reinforced by the
former. However, an advantage in one scheme constitutes an equal
disadvantage in the opposing one. We argue that such difference in
performance relates positively with the provided incentive to switch between

parameter constellations.

Method

This approach utilizes the simulation library of the HDDM module
(Wiecki, 2013; Python 2.7), which allows us to simulate decisions informed by
arbitrary parameters. Namely, a set of n samples of decisions taken under a
fixed set of parameters is generated, which is then evaluated by two reward

schemes.
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Notably, these schemes are variable in both ambivalent brackets (CS & WF).
The ambivalence lies within the fact that the correct & slow (CS) category
yields a reward in the increase scheme, and conversely a penalty in the
decrease scheme. The same logic applies to the wrong & fast (WF) category.
Penalty and reward values range between 0 and +-0.7. Both CF and WS

remain fixed at +1 and -1, respectively.

As the ambivalent category values are mirrored in the opposing scheme, I
hypothesize the provided incentive to diverge alpha values to be captured by
varying the weight of their contribution towards performance. This results in
prioritizing accuracy (prefer CS over WF), or vice versa, prioritizing speed
(prefer WF over CS), simply due to these respective strategies offering more

reward.

Furthermore, a custom RT criterion was implemented as well. When this
criterion 1s reached, the possible feedback cuts down to either
correct & slow (CS) or wrong & slow (WS). WS always translates to -1, but the
CS category can be either a penalty or a bonus — depending on the applied
scheme. Within the increase scheme, it is advantageous to pass that threshold,

unlike so in the decrease scheme.

For a particular set of parameters, an averaged difference in performance
(quantified by total score) was generated by the evaluation of the performance
of trials via two schemes. These simulated decisions were informed by the

same parameters (alpha = 1.8, delta = 1.2).

Each decision yields a binary correct/incorrect, as well as the response time.
These metrics are subsequently fed into the reward scheme, which outputs a
feedback value ranging from -1 to +1. If the decision was either correct & fast
or wrong & slow, the feedback is identical. However, if the output is classified
as either of the middle brackets, the schemes evaluate differently. Say, the
decision fell into the slow correct category (RT > 1.12sec): the increase scheme

outputs a reward (R) of +0.7 and the decrease scheme penalizes (P) with -0.58.
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Notably, this framework allows us to test arbitrary values for the
classifications in question. We let this decision occur k times respectively,
which are then evaluated by the increase and decrease scheme. In this case, k
represents 500 decisions. Again, the parameters informing these decisions
remain fixed. We then simply determine the difference of the respective

average bonus per decision of both schemes via subtraction.

If the difference in the average bonus between

Drift Rate & : 1.233333

schemes is positive, the increase scheme [SEIGGERESEIEIEI(CREYNR-LYAYY]
Performance-Delta: 0.3217702

granted a larger bonus a.o.t. the decrease _ _

Fig. 33. Encoding of one unit
scheme. Conversely, a negative value 1is within the incentive map.
interpreted as a higher reward when evaluated

by the decrease scheme.

Now regard figure 33. The outlined scenario of 1000 decisions taken under a
fixed set of parameters result in a 32% higher bonus in the increase scheme
a.o.t. the decrease scheme. Figure 34 depicts the parameter space ranging
from 0.1 to 3.5 for both boundary separation and drift rate. Blue areas are to
be interpreted as a larger utility provided by the decrease scheme and
conversely, red areas depict the space wherein the increase scheme was more

rewarding.

Performance Comparison under rtc = 1.12

increase-scheme

indifference

Boundary Seperation a

decrease-scheme

Drift Rate &

Fig. 34. Incentive map evaluated by reward = +0.7,
penalty = -0.58 and classified by a RT criterion of 1.12. The
white rectangle frames the observed parameter space
participants operated in.
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The parameter set informing Fig. 34 gives rise to a landscape which saturates
in incentive along the upper and lower bound of the observed parameter space
(white rectangle, Fig.34). Such an increase in color saturation points towards
a divergence in utility for the respective strategies. Red areas point towards

an advantage for deciding cautiously, and vice versa recklessly in blue areas.

Generally — and cycling back to the workings of the DDM — both a lower alpha
and a higher delta lead to decisions being taken faster and result in a higher
probability of the trial succeeding the RT criterion and thus being classified as
fast. Regardless of correctness, a faster decision is classified as either correct
& fast (CF) or wrong & fast (WF). The latter yields a reward in the decrease

scheme, whereas a penalty in the increase scheme.

This results in a blue dominance in the low-alpha space, enveloping all delta
values. Conversely, slower decisions have a higher chance of benefitting from
the CS (correct & slow, rewarding) — category of the increase scheme, resulting
in a strong dominance of red in the upper value space of alpha. Decisions take
longer but have a higher likelihood of being correct. The saturation (respective
dominance of a particular scheme) is to be seen as the correlate for the

provided incentive.

One of the advantages of this approach is to capture humanly unattainable
parameter space. Importantly, the observable parameter space, i.e., the range
of parameters stemming from the data is depicted as the white rectangle both

in Fig. 31 and Fig. 34.

Within this ‘observable’ space, the difference between-schemes ranges from -
20% to +20% but is separated by a larger large ribbon of white indifference-
space (abs(delta) <= 10%).

I theorize that an optimal scheme would be characterized with a narrow ribbon
of indifference, neighbored by strong (highly saturated) scheme-dominated

spaces.
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The mnarrow ribbon would entail a
relatively small adjustment of alpha being
needed for moving to the opposing pole of

the SAT, which again leads to profitability

for this particular trial. Furthermore, the
larger the needed adjustment of control ¥ig: 35. A desirable demarcation of

opposing strategies characterized by
parameter 1is, the costlier this swing strongly saturated incentives separated
) by a narrow white ribbon of coding
arguably becomes. Hence, keeping the indifference.
swing small would reduce the cost of

adaptation (III).

Figure 35 relates back to block II outlined in chapter 5, which discusses the
importance of detecting the possibility of optimization, initiating the

exploration process.

If a system starts within a broad, white ribbon (Fig. 31) the likelihood of
detecting the opportunity of optimization remains quite low. However, if a
system starts in a highly saturated — say red — region, the likelihood of
optimizing parameters for the opposing context rises, as an advantage of
operating in the increase context is mirrored as disadvantage for the decrease
context. Consequently, it seems logical that the detection of such disadvantage
would initiate exploration and subsequently lead to the gradual divergence in

caution between contexts.
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Limitations

A substantial downside of the current implementation lies in its backend,
which generates 500 samples twice, which are then evaluated by both
schemes. One set of decisions is fed through the evaluation pipeline which
yields the average bonus. This process is not only redundant but introduces
noise while not providing any additional information. This problem is
visualized by generating an incentive map, which codes null for the

ambivalent brackets.

increase-scheme

&)

indifference

Boundary Seperation a

1 Drift Rate 6 : 2.538384

Boundary Seperation a: 0.8555556
Performance-Delta: 0.1709579

u decrease-scheme

1 2 3

Drift Rate &

Fig. 36. Incentive map informed by null-value ambivalent brackets. As
the utility of both wrong & slow and correct & fast trials

(-1, +1 respectively) cancel out, no advantageous area for any strategy
manifests. The subject has no utility in changing decision parameters.
All color in this map stems from noise in the simulation algorithm.

The performance metric only considers the +1 and -1 feedback, which is
mirrored in the scheme. Doing so, all scheme-induced difference in
performance is eliminated and consequently all variance in performance is due

to noise adding unnecessary and avoidable confounds to the data.

In Fig. 36, performance differences of up to 17% are observable — again, all

differences in performance are purely noise-driven. This variance is
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pronounced in the low-alpha space, which is characterized by rapid responses

and a high probability of erring but spans across the entire plane.

Outlook

Despite these implementational teething issues, I regard the logic and
functions of this framework as sound — and more importantly scalable through
its modularity.
For instance, additional parameters can be implemented, such as collapsing
bounds (Cisek, Puskas, & El-Murr, 2009) accounting for the rise of urgency
with time passing, implemented as gradually lowering alpha-bounds. This
would result in less integrated evidence needed to initiate a decision at
timepoint t, a.0.t. timepoint t-1.
Furthermore, one could integrate the z (bias) parameter into the model,
investigating the incentive provided to adjust the starting point of the decision
process. In conclusion, this framework constitutes an approach of visualizing
the incentive provided by opposing reward schemes to explore and
consequently exploit respective parameter configurations. I used this method
to validate the results stemming from real data, as well as to ideate possible
approaches to work around the limitations found in the main body of the study.
Further, I created a model which decomposes the process of adaptation into
three sub-components, allowing for an individual investigation of each.
Incentive mapping constituted a substantial role in building intuition behind
the workings of said model.
I believe that the presented incentive map grants its greatest value in building
intuition for the workings of reward in DDM modeling. This educational

aspect is further amplified by its customizability.

As Samuel Karlin said, the purpose of models is not to fit the data, but to
sharpen the questions.
Likewise, the incentive map serves this purpose while further providing visual

guidance for building intuition on the workings of reward in decision making.
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